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Summary

This work proposes a hybrid strategy in a two-stage search process for many-objective optimization. The
first stage of the search is directed by a scalarization function and the second one by Pareto selection enhanced with
Adaptive e-Ranking. The scalarization strategy drives the population towards central regions of objective space,
aiming to find solutions with good convergence properties to seed the second stage of the search. ARaptirgy
balances the search effort towards the different regions of objective space to find solutions with good convergence,
spread, and distribution properties. We test the proposed hybrid strategy on MNK-Landscapes and DTLZ problems,
showing that performance can improve significantly. Also, we compare the effectiveness of applying either Adaptive
e-Ranking or NSGA-II's non-domination sortirfg crowding distance in the second stage, clarifying the necessity of
Adaptivee-Ranking. In addition, we include a comparison with two substitute assignment distance methods known
to be very effective to improve convergence on many-objective problems, showing that the proposed hybrid approach
can find solutions with similar or better convergence properties on highly complex problems, while achieving better
spread and distribution.

1.

Introduction 08]. Here the main challenge consists in how to determine
a minimum set of objectives functions that preserves most
Recently, there is a growing interest on applying multi- of the characteristics of the original problem. When such

objective evolutionary algorithms (MOEAs) to solweny  reductions are possible, the (lower dimensional) problem
objective optimization problems with four or more ob- becomes more amenable to the evolutionary algorithm and
jective functions. In general, conventional MOEAs [Deb to the decision maker as well. However, even if dimen-
01, Coello 02] scale up poorly with the number of objec- sjonality reduction is possible, there is no guarantee that
tives and new evolutionary algorithms are being proposedthe new dimension of the problem will be low enough to

[Ishibuchi 08]. Research has focused mainly on the effec- gvercome the problems of weak selection pressure of con-
tiveness of selection, dimensionality reduction, incorpora- yentional MOEAs.
tion of user preferences, and space partitioning.

and a poor scalability of density estimators affect seri-
ously the performance of conventional Pareto MOEAS in
many-objective spaces. Likewise, the humber of scalar-
ization functions required for many-objective optimiza-

tion increases substantially the complexity of scalariza-

Methods that focus on the incorporation of user prefer-
ences aim to provide the MOEA with a reference point so
that it can concentrate its search on a small region of the
Pareto front [Deb 06a]. Incorporation of user preferences
is a very interesting and useful approach, however here
the assumptions are that the user has a clear idea about the

Pareto front and knows where to look for solutions. When

The lack of discriminatory power by Pareto dominance

tion based MOEAs. These are serious issues that have

motivated research on methods to improve selection in
MOEAs for many-objective optimization (see below for
related works).

such knowledge does not exist, we first need methods that
can search effectively in many-objective spaces and gen-
erate an approximation of the Pareto front.

Dimensionality reduction approaches try to reduce the Space partitioning [Aguirre 09] instantaneously parti-

number of objectives the evolutionary algorithm uses to tions the objective space into few lower dimensional sub-
solve the problem [Deb 06b, Brockhoff 070pez Jaimes  spaces and concurrently searches in each of them, aim-
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ing to find good approximations of the true Pareto frontin set of solutions with good convergence properties. On the
the original high-dimensional objective space. Space par-other hand, Adaptive-Ranking uses the local information
titioning uses a partition strategy to define a schedule of of the distribution of solutions to balance the search effort
subspace sampling, so that different subspaces can be entewards the different regions of objective space, increasing
phasized at different generations. This approach has beetthe discriminatory power of Pareto selection while intro-
used effectively to improve the effectiveness of selection ducing simultaneously a density estimator that scales-up
in high dimensional spaces, and could be used as a framewell on high dimensional spaces, to find solutions with
work for dynamic dimensionality reduction, and to realize good convergence, spread, and distribution properties.
parallel implementations of many-objective optimization  We study the effects of the scalarization and Adaptive
algorithms. e-Ranking applied independently. Then, we study the ef-
In practice, the optimization of many-objective real-worldfects of the proposed hybrid strategy, showing that it can
problems is not a single step process. Rather, it often con-significantly outperform its individual components. Also,
sists of a series of steps in which the above mentioned ap-since the hybrid strategy uses just one scalarization func-
proaches could be used to complement and support eaclion during the first stage, it becomes considerably faster,
other. Thus, research to improve and combine these apwhich is an important issue for scalability on high-dimen-
proaches is important to foster further developments onsional spaces. Fixing scalarization as the first stage strat-
many-objective optimization. egy, we compare AdaptiveRanking and NSGA-II's non-
This work focuses on the effectiveness of selection on domination sortingd crowding distance as the strategy
many-objective optimization. Some methods have beenfor the second stage, clarifying the necessity of Adap-
proposed to improve Pareto selection for many-objective tive e-Ranking. Also, we compare the proposed hybrid
optimization by incorporating indicator functions or ex- Strategy with Subvector Dominance Assignment and Ep-
tensions of Pareto dominance [Zitzler 04, Emmerich 05, silon Dominance Assignment [Koppen 07], two substi-
Corne 07, Kukkonen 07, Ishibuchi 07b, Koppen 07, Sato tute assignment distance methods known to be very effec-
07]. Most of these methods induce a different ranking tive to improve convergence on many-objective problems,
based on information of how close solutions are to domi- showing that the hybrid approach can found solutions with
nate other non-dominated solutions and have been prove@imilar or better convergence properties on highly com-
effective to improve convergence at the expense of spreaddlex problems, while achieving better spread and distribu-
or vice-versa. To rank solutions, these methods comparetion. As benchmark instances we use MNK-Landscapes
each solution with all other solutions, bringing the com- [Aguirre 07] with 4 < M < 10 objectives,N = 100 bits,
putational order ta?(M|P|?), where M is the number and0 < K < 50 epistatic interactions per bit. In addition,
of objectives andP| the population size. Other methods We test the proposed hybrid strategy on continuous prob-
are based on scalarization functions that map the multi-lems with non-convex fronts using DTLZ functions with
objective problem to a single-objective one [Ishibuchi 07a, 4 < M < 10 objectives and 100 variables. Parts of this
Hughes 05]. Since a scalarization function defines a searchvork have been presented in [Aguirre 10b] and [Aguirre
direction around a single point in objective space, to try 10c].
to uniformly search the objective space and find good ap-
proximations of the Pareto front, very many scalarization 2, Proposed Hybrid Strategy
functions must be specified. The computational order of
ranking with one scalarization functions§ M |P|). How-  2-1 Concept
ever, usually the number of scalarization functions for many- Multi-objective optimizers seek to find trade-off solu-
objective optimization is of the same order of the popula- tions with good properties of convergence to the Pareto
tion size, making the overall computational order similar front, well spread and uniformly distributed along the front.
to O(M|P]?). These three properties are especially difficult to achieve
In this work, we propose a hybrid strategy in a two-stage in many-objective problems and most searching strategies
search process. The first stage of the search is directed bgompromise one in favor of the other. In addition, larger
a scalarization function and the second one by Pareto sepopulation sizes are likely to be required in order to create
lection enhanced with AdaptiveRanking [Aguirre 09]. an appropriate approximation of the Pareto front in high
The scalarization function provides a computationally fast dimensional spaces. Both, larger populations and high di-
unifying search direction to drive the population towards mensionality, impose a serious challenge to the computa-
central regions of objective space, aiming to find a sub- tional scalability of current algorithms.
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Adaptive e-Ranking In multi-objective evolutionary algorithms the most fre-
quently used scalarization functions are weighted sum fit-
ness functions with non-negative weight vector, reference
point-based fithess function, aaaonstrained fitness func-
tion. Weighted sum fitness functions, expressed by

Sz

fitness(x) = wy f1(x) +wa fo(x) +--war fur(x), (1)

/// Scalarization
f, set with different weight vectore = (wy,ws, -+ ,war)
were successfully used to specify various search direc-
Fig. 1 Hybrid Strategy tions to search concurrently on them by multi-objective lo-

cal search algorithms [Ishibuchi 98, Jaskiewics 02]. Very-
many weighted sum fitness functions have also been used
for many-objective optimization [Hughes 05], as mentioned
in previous sections. The reference point-based fitness
function is the distance from the original fitness values of a
hsolutionf(ac) to a desired reference point in the objective

Seeking to find approximations of the Pareto front ful-
filling the three properties of convergence, spread, and dis-
tribution, rather than expecting a sole strategy to work
efficiently for all tasks, it seems reasonable to distribute
the search into different strategies that complement eac )
other. The proposed hybrid strategy follows this approach, spacef” = (ff,f3, . fis). i-e.
using one strategy from the domain of scalarization that
focus on convergence-only and the other one from the do-

main of Pareto dominance and its extensions (Adaptive The incorporation of reference points into MOEAs was
c-Ranking) that in addition to convergence also pays at- gy o mined in [Deb 06a]. The-constrained fitness func-
tention to diversity. The strategies are deployed following ;1 is based on the wide spreagtonstrain approach, in
a two-stage scenario, assigning one strategy to éach staggynich jower (or upper) bounds for some objectives are
where the first strategy works to seed the second one, as "'specified by inequality conditions. The incorporation of a
lustrated inFigure 1. The expectation for the hybrid strat- _.,ngrained fitness function into MOEAS was examined

egy is that better results could be achieved by diversifying in [Ishibuchi 07a] using the following function
the population after some degree of convergence has been

achieved than by emphasizing convergence and diversity k-1

since the beginning of the search, where the population//itness(@) = fu(®) —a)_max{0, fi(2)}, ®3)

is random. Also, by simplifying the scalarization strategy =t

to one scalarizing function, it is expected that the hybrid where lower bounds were specified for the the first (k-

fitness(x) = distance(f*, f(x)). 2

method could speed up the search. 1) objectives such thaf;(z) > ¢;, ¢; specifies the lower
bound of the i-th objective, andis a penalty with respect
2.2 Scalarization Strategy. F' to the violation of the inequality condition. In the above

Scalarization functions have played an essential role infitness functions, the weights, the reference point, and the
solving multi-objective optimization problems. In scalar- lower bounds for some objectives allow to specify one or
ization, the multi-objective problem is transformed into more regions of interest for the evolutionary algorithm to
one or a series of single objective optimization problems, focus on.
involving possibly some parameters or constraints in or-  In our method, the role of the scalarization strategy is to
der to capture some kind of preference information from provide a computationally-fast unifying search direction
the decision maker. Many different scalarization functions to drive the population towards central regions of objec-
have been suggested in the literature based on different aptive space, so that solutions with good convergence could
proaches and multi-objective optimization methods utilize be found to seed the second stage of the search. That is,
them in various ways. The input requested from the deci- for computational reason we are interested on using only
sion maker may consist on trade-off information, marginal one scalarization function and our region of interest is the
rates of substitution, desirable objective function values, central part of objective space. A weighted sum function,
or a reference point. Furthermore, the scalarization mayset with equal weights for all objectives, can fulfill these
be performed once or repeatedly as a part of an iterativerequirements without requiring knowledge of the problem
process in which the decision maker is directly involved. at hand [Ishibuchi 07b]. Thus, in this work we use the
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following scalarizing function,

1 M
i=1

wheref; denotes thé-th objective value and/ the num-
ber of objectives.

Adaptation ofe and its step of adaptatiof is important

to properly follow the dynamics of the evolutionary pro-
(4) cess on a given problem.
3. Test Problems

3-1 Multi-objective MNK-Landscapes

A multi-objective MNK-Landscape [Aguirre 07] is a
vector function that maps binary strings into real num-
bersf() = (fi(-). f2()s++ , far(-)) : BY — R, where
M is the number of objectivesf;(-) is the i-th objec-
tive function, B = {0,1}, and N is the bit string length.
K ={K,,---, K)} is a set of integers wherg; (i =
1,2,---, M) is the number of bits in the string that epistat-
ically interact with each bit in the-th landscape. Each
fi(-) can be expressed as an averageVofunctions as
follows

2-3 Adaptivec-Ranking StrategydeR”

Pareto ranking classifies the entire population in one or
more sets of equally ranked solutiofis (i = 1,--- , Ng),
each set associated to raihk On many-objective prob-
lems the number of Pareto non-dominated solutions in-
crease substantially with the dimensionality of the objec-
tive space antiF; | usually becomes larger than the size of
the parent populatiopP| from early generations [Aguirre
07].

e-Ranking re-classifies the se& (1 = 1,--- , Ng) into
sets¥s (j=1,---,Ng), Ni > Np, using a randomized
sampling procedure that favors a good distribution of solu-
tions based on dominance regions wider than conventional
Pareto dominance-{dominance). The sampling heuristic Where f; ; : BX*1 — R gives the fitness contribution of
favors an effective search using the following critetig.  bit z; to fi(-), andz{"" 25" ... () are thek; bits
Extreme solutions are always part of the samplg.Each interacting with bitr; in the stringz. The fitness contri-
(not extreme) sampled solution is the sole sampled repre-bution f; ; of bit z; is a number between [0.0, 1.0] drawn
sentative of its area of influence, which is determined by from a uniform distribution. Thus, eacfy(-) is a non-
e-dominance. (iii) Sampling of (not extreme) solutions linear function ot expressed by a Kauffman's NK-Lands-
follows a random schedule. These criteria aim to balancecape model of epistatic interactions [Kauffman 93]. In
the search effort towards the different regions of objec- addition, it is also possible to arrange the epistatic pat-
tive space, increasing the discriminatory power of Pareto tern between bit;; and thekK; other interacting bits. That
selection while simultaneously introducing a density esti- iS, the distributionD; = {random, nearest neighbor} of
mator that scales-up well on high dimensional spaces, to; bitsamongV. Thus,M, N, K = {K1,K,--- , K},
find solutions with good convergence and diversity (spread @andD = { Dy, Da, -+, Dy}, completely specify a multi-
and distribution) properties. objective MNK-Landscape.

The number of rank-1 solutior)§s| after reclassifica-
tion depends on the value setdq> 0). Larger values
of e imply that sampled solutionsdominate larger areas,
increasing the likelihood of having moredominated so-
lutions excluded from the sample that forfif. Adap-
tive e-Ranking adapts at each generation so thif;| is
close to the size of the parent populati@. The adap-
tation rule takes advantage of the correlation between
and the number of-nondominated solutions in the sam-

(5)

i

N
1 i§) (i ij
fb(m) = NZfi»j(‘rj7Z§ J)Vzé ])v"' azg(vj))
i=1

3-2 DTLZ Problems

To study the performance of the proposed algorithm on
continuous functions with non-convex Pareto fronts, the
functions DTLZ2, DTLZ3 and DTLZ4 of the DTLZ test
functions family [Deb 02] are used. These functions are
scalable in the number of objectives and variables and thus
allow for a many-objective study. DTLZ2 has a non-convex
Pareto-optimal surface that lies inside the first quadrant

ple. Basically, if 75| > |P| itincreases the step of adapta-
tion A — min (A x 2,A,4,) ande < e+ A. Otherwise,
if |Ff| < |P| it decreased «+ max (A x 0.5,A,,;,) and
e — max (e — A,0.0). The appropriate value efthat ap-

of the unit hyper-sphere. DTLZ3 and DTLZ4 are varia-
tions of DTLZ2. DTLZ3 introduces a large number of lo-
cal Pareto-optimal fronts in order to test the convergence
ability of the algorithm. DTLZ4 introduces biases on the

proaches$Fs| to | P| is expected to change as the evolution density of solutions to some of the objective-space planes
process proceeds, it is problem dependent, and affectedn order to test the ability of the algorithms to maintain a
by the stochastic nature of the search that alters the in-good distribution of solutions. For a detailed description
stantaneous distributions of solutions in objective space.of these problems the reader is referred to [Deb 02].
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4. Method of Analysis and thus very close to the Pareto front, wherdas=
1.0 means that,, = (0.0,0.0,---,0.0) and far from the
In this work, we use the hypervoluritéand the setcov-  Pareto front. To calculatg, we use Fonseca et al. [Fon-
erageC [Zitzler 99] to evaluate the performance of the al- seca 06] algorithm.
gorithms, complementing our analysis with the maximum

max(f;) and minimummin(f;) fitness values found in 5 Performance of the Proposed Hybrid Strat-

each objective. The measufeprovides information on egy on MNK-Landscapes
convergenceC (A, B) gives the fraction of solutions in set
B that are dominated at least by one solution inet 5.1 Preparation

H is a measure of convergence and diversity, calculated The performance of the algorithms is verified on MNK-
as the volume of thé/-dimensional region in objective  Landscapes with < M < 10 objectives,N = 100 bits,
space enclosed by the set of non-dominated solutions anchumber of epistatic interactions = {0,1,3,5, 7,10, 15,

a dominated reference point. If the reference pointis very 25 35,50} (K, ---, Ky = K), andrandomepistatic pat-
close to the Pareto front, non-dominated solutions aroundterns among bits in all objective®(, - - - , D ;= random).

the center region of the Pareto front are relatively em- Results presented below show the average performance of
phasized in the hypervolume calculation. On the other the algorithms on 50 different problems randomly gener-
hand, if the reference point is far from the Pareto front, ated for each combination df/, N and K. In the plots,
non-dominated solutions along the extreme regions of theerror bars show5% confidence intervals on the mean.
Pareto front are emphasized in the hypervolume calcula- |n this work, we implement the proposed hybrid strat-
tion. The hypervolume has become widely used to analyzeegy using NSGA-II [Deb 00] as a host algorithm, modify-
the performance of multi-objective optimizers. However, ing it accordingly to include the scalarization addR”
results on the hypervolume are usually reported using astrategies. During the first stage, selection is based solely
single reference point, which provides only a partial vi- on the scalarization function, whereas in the second stage
sion of the results obtained. In many-objective problems, A¢R¥ is applied after Pareto dominance. All algorithms
particularly, it is difficult to grasp the convergence and used in our study are set with parent and offspring pop-
diversity properties of the solutions obtained and report- ulations of sizgP| = |Q| = 100, two point crossover for

ing results using one reference point could often lead to recombination with rate, = 0.6, and bit flipping muta-
overstated and sometimes erroneous conclusions about thgion with ratep,, = 1/N per bit. The number of evalua-
overall performance of the algorithms. Analysis of hyper- tions is set t& x 10° (7' = 3000 generations). IMeR”,
volume varying the reference point provides more insights initially ¢ = 0.0, the initial value of the step of adapta-
on the distribution of the obtained solutions and helps clar- tionis Ay = 0.005 (0.5%) and its maximum and minimum

ify the relative contribution to the hypervolume of solu- values are set td\,,,,, = 0.05 (5%) andA,,.;,, = 0.0001

tions that converge to the central regions of the space and0.01%).

those that contribute to diversity (spread). To enrich our

analysis, we compute the hypervolume using differentref- 5.5 Effects of Individual Components

erence points. The reference poigt, = (r1,7r2, -+ ,ram)
is calculated by

81 Adaptive e-Ranking Strategy
In this section we discuss the performance of Adaptive

ri = (1.0 — dg) x min (fi),i = 1,2, , M, ) e-Ranking Strategy4eR”) using NSGA-Il as a reference
for comparisonFigure 2(a) shows the normalized hyper-
wheremin (f;) is the minimum value of the-th objec- volumeH betweendeRF and NSGA-II varying the ref-

tive function observed in the joined sets of Pareto optimal erence point folk’ = 7 andM = {4,6,8,10} landscapes.
solutions found by the algorithms we compare, ahd From this figure it can be seen thdtR” attains better

is a parameter that determines the distance of the refer-H for all values of M regardless of the reference point.
ence point to the minimum values found for each objec- Also, note the increasing slopes of thé& curves as the
tive function (min (f;), min (f2),---,min(fas)). In this reference point gets closer to the Pareto front, i.e. varying
work, we uselr = {0.01,0.1,0.3,0.5,0.7,1.0} to set the dr from 1.0 to 0.01. These results suggest that solutions
reference point,,, = (r1,r2,---,rp). Note thatwe max- by AeRF are better than solutions by NSGA-II particu-
imize all objective functions and the allowed range for all larly in the central regions of the objective space. Notice
f:1s[0.0,1.0]. Hencedpr = 0.01 means that the reference that the slope of thé{ curve becomes steeper by increas-
pointisrg, = 0.99 x (min (f1),min (f2), -, min(far)) ing the number of objectives frol/ = 4 to M = 6, but
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Fig. 2 Adaptivee-Ranking, K = 7,4 < M < 10.

osfF
0.75F ]
07 ]
0.65F ) ]
F max min
06l
0.55f
osF ]
045[ O----0---0-reQ "D ragean e -0
04 ]
035} ]
03 -_ B gy - y. % g B R SR Y _-

025F v e T
1 2 3 4 5 6 7 8

m objective

m m

NSGA-II ]

—0— --0-- AsRF ]

tness

fi

(a) Adaptivee-Ranking
Fig. 3

I T TP R R R P I L
0 0.1 0203040506 0.7 0809 1
R

(a) NormalizedH

T T T T T T T T T
08 M=8, K=7 g ]
0.75F

max f,, min f, -
0.7 —— O

065 o0—o—0— 5 —%—0—0o—=0 .

0.6 1

0.55F 0o gD g DO e
0_5 -_ _-
0.45F ]
04 ]
035f ]
03f
0251 \ N R PR R B B

1
1 2 3 4 5 6 7 8
m objective

fitness

(b) Scalarization strategy

max (fm) andmin (f,), K = 7.

c
T T T T T T T
T k=7 w uF ]
ook N: NSGA-II
08 CON ) CN)
o7k O —O0— ]
06 Q/Q_—Q\D—G\D\Q ]
0.5F .
041 y
03F .
02F .
0.1F ]
4 6 8 10
M

(b) Set coveragé

Fig. 4 Scalarization strategy{ = 7 and4 < M < 10.

it gradually recedes fok/ = 8 and M = 10 compared to
M = 6. This is an indication that the convergence abili-
ties of AeRF reduce forM > 6, especially to the central
regions of objective space.

Figure 2(b) shows results using thé coverage mea-
sure. Note that(A”, N), the fraction of NSGA-II's so-
lutions dominated byle RF’s solutions, is almost.9 for
M = 4 and reduces progressively with until it approaches
0.2 for M = 10. On the contraryC(N, AE) is zero for
all M, which means that no solution by R” is domi-

nated by NSGA-II's solutions. These results confirm the
superiority of AcR¥ over NSGA-Il and corroborate the
decreasing convergence powerAfR” for large values
of M.

Figure 3(a) shows the maximum and minimum fitness,
max (f,) andmin (f,,), of solutions in the Pareto front
found by NSGA-Il and4d¢R” for K = 7andM = 8 land-
scapes. From this figure, it can be seen that NSGA-II
andAeR¥ achieve similamax (f,,,). Howevermin ( f,,)
is lower by NSGA-II. Similar values ofnax (f,,) sug-
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Fig. 5 Proposed Hybrid Strategiy = 7 and4 < M < 10.

gest that spread by the algorithms is comparable, but theuF'. Comparing withFigure 2(b), note thatC(u, N) <
lower values ofnin ( f,,,) suggest that solutions by NSGA-  C(A¥ N) for M < 7, butC(u,N) > C(A®,N) for M >
Il seem to be trapped in lower local optima. Another in- 8. These results are in accordance with the observations
teresting property ofle R” is that solutions in the Pareto made forH, and confirm the better convergence proper-
front aree-nondominated, which gives a good distribution ties of uF' on landscapes with more than eight objectives.
of solutions. However, note thap F' converges to a narrow area, as
§2 Scalarization Strategy shown inFigure 3(b) that plots thenax( f,,,) andmin( f;,)

In this section we analyze the scalarization stratedy)( of the non-dominated set found Iy*. Overall, these re-
Figure 4(a) shows the normalize@{ betweenuF and sults shows that the scalarization stratedy converges

NSGA-II varying the reference point adif = 7 and M = well, albeit to a narrow region. The similar values of
{4,6,8,10} landscapes. Comparirig by looking atFig- C(uF,N) for all M is an interesting property Qi F. It

ure 4(a) and Figure 2(a), it can be seen that on/ = shows that this strategy in terms of convergence can scale
{4,6} landscapeg.F is significantly worse thamie R up to a large number of objectives, suggesting that it could
for any value ofdr. On M = 8 landscapesy [ is still be useful as part of the hybrid strategy.

worse thandeRF for dp > 0.1, but similar toAeRF for
dr = 0.01. However, onM/ = 10 landscapeg, F' is better

than AeRF for dr < 0.5. These results suggest thaf' 5-3 Eiffects of the Hybrid Strategy

gets better compared tdeR¥ in terms of convergence In this section we analyze the hybrid strategy that com-
to central regions when the number of objectives is abovebines in a two-stage process scalarization and Adaptive
eight. e-Ranking (tF AeRF). uF AeRF first starts withu F' and

Figure 4(b) showsC betweenuF and NSGA-II. Note then at generatiorg it switches toAeR¥. Figure 5 (a)
that for any number of objectives, the value<¢f. F, N') (c) show™ by uF AeRF on M = {6,8,10} landscapes,
are similar and above.5, meaning that more than half of respectively, varyings = {1000, 1500, 2000,2500} and
the solutions by NSGA-II are dominated by solutions of keeping the total number of the generations fixed'te
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Fig. 6 Adaptivee-RankingAeRE and Proposed Hybrid StrategyF" AeRP, 0 < K < 50 and4 < M < 10.

3000. The same figures also include results /by and
AeRP for comparison. Note that oM/ = 6 the inclu-
sion of uF' does not imprové{ (actually, onM = 4 for
which results are not showf{ reduces by including.F',
with larger reductions observed for late switching times
ts). However, switching fromuF to Ae R during the run
can improveH substantially ¢z = 0.01) on M =8 and

M = 10, with a late switching timet = 2500) working
better than an early one.

Figure 5 (d) showsC values betweemF AeRF and
NSGA-II for tg = {1000, 2500}. We also include results
by uF and AcRF for comparison. Results o con-
firm our observations oft{ and give a clearer picture of
the effects of including.F. Note thatuF AeRE shows
relatively better convergence thaik R and the impor-
tance of late switching timess; for M > 7. Also, it can
be seen that convergence is better thdnfor M <9 if
ts =2500. For M =10 similar convergence t@.F' is
observed. HowevelF AcR¥ tg = 2500 shows signifi-
cantly better{ thanuF on M = 10 as shown irFigure 5

(c).

Figure 6 show results bydeR” and uF AeRF (tg =
2500), varying K from 0 to 50 to observe the scalabil-

ity of the algorithms on problems of increased epistasis.
From these figures, note that similarko= 7, on M = 4
performance deteriorates slightly by including’, espe-
cially in terms of convergence, whereas bh= 6 H and

C are similar by both algorithms. On the other hand, on
M =8 and M = 10 the inclusion ofu.F' leads to better

‘H andC on a broad range of (K >1). Sinceuf is

just one scalarazing function, its computation is faster than
Pareto ranking based approaches. Thus, the hybrid strat-
egyuF AeRF (ts = 2500) is also substantially faster than
AeR¥, which becomes relevant for scalability on high di-
mensional spaces.

6. Scalarization and NSGA-II

In this section we analyze a two-stage method using the
scalarization strategyF’ in the first stage and NSGA-II's
non-domination sortingz crowding distance strategy in
the second stage. We call this two-stage methddV
for short. By comparing the performance of'N and
the proposed. ' AcR¥, we aim to clarify the necessity of
Adaptivee-RankingAeRE .

Figure 7 shows results by, F' N varying the switching
time between stages = {1000, 1500,2000,2500} on land-
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Fig. 7 Two-stage Strategy using Scalarization and NSGA-II's Non-domination Sorting & Crowding Distanee?
and4 < M < 10.

scapes withl/ = {4,6,8,10} objectives and{ = 7 epistatic the first stage of the search, whereas AdaptiRanking
interactions. We also include results by NSGA-II, scalar- A¢RF adds to the good performance of the scalarization
izationy F alone, and the proposed hybyfid Ac R” (tg = strategyu F' further enhancing convergence, spread, and
2500) for comparison. distribution of solutions.

From Figure 7 (a)-(c) note that the two-stage method
1F' N achieves better hypervoluntg than NSGA-Il and
that later switching times work better than early ones. How-
ever, hypervolume by.F'N is considerably lower than
by uF alone, especially for reference points close to the Inthis section we compare performance between the hy-
Pareto front. These results on hypervolume contrast sharplgrid strategy: F' Ae R” and two substitute distance assign-
with those achieve by the hybrid FAcR”, which are ment methods, namely Subvector Dominance Assignment
considerably better thapF as shown in the same fig- (SVDOM) and Epsilon Dominance Assignment (EPSDOM)
ures. FromFigure 7 (d), a similar conclusion can be [Koppen 07]. Similar to the hybrid strategy, SYDOM and
reached on the set coverage Note thatC(uF N, N) is EPSDOM were initially proposed using the NSGA-II frame-
in the range [0.1,0.35] fots = 1000 and [0.2,0.55] for ~ work. SVDOM and EPSDOM keep Pareto dominance as
ts = 2500, which means that F N dominates NSGA-II's  the primary ranking of solutions, but replace the diversity
solutions. However¢(uF, N) andC(uF AP, N) are su-  estimator with a substitute assignment distance to assign
perior. (NSGA-II does not dominate solutions by other the secondary ranking of solutions favoring convergence
algorithms, labeled aS(N,~) in the figure). These re- exclusively. Our motivation is to understand the effective-
sults suggest that the second stage based on NSGA-II'mess of the hybrid strategy that seeks to balance conver-
non-domination sortingz crowding distance cannot take gence, spread, and distribution against two highly effec-
advantage of the well-converged solutions foung:yin tive strategies such SYDOM and EPSDOM that focus on

Comparison with Substitute Assignment
Distance Methods
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Fig. 8 Proposed Hybrid StrategyF AeR¥ 2500 and SVDOM,0 < K < 50 and4 < M < 10.
convergence exclusively [Aguirre 10a]. Firstly, we analyze results by AcR¥ and SVDOM.

. . . From Figure 8 (a) and(b) it can be seen that overall on
The substitute distance that determines the secondary g @ (b)

_ o all M the hypervolume by F AeR¥ is better than by SV-
ranking of solutions in SVYDOM and EPSDOM are based b . W . y
. DOM. It should be highlighted thatigure 8 (a) shows
on measurement procedures that calculate the highest de- . .
. L . the hypervolume calculated setting a reference point far
gree to which a solution is nearly Pareto dominated by any _ . .
. . away from the Pareto front, which emphasizes the contri-
other non-dominated solution [Koppen 07] (closeness to | . . .
. : . bution of solutions located along the extreme regions of
dominance). SVDOM re-ranks a non-dominated solution .
the Pareto front. On the other hand Figure 8 (b) a ref-

based on the number of objectives that are better in c)thererence oint close to the Pareto front is used to emphasize
non-dominated solutions. On the other hand, EPSDOM P P

. . .., the contribution of solutions located in central regions of
re-ranks a non-dominated solution based on the magnitude

. ) . . the Pareto front. Frorfrigure 8 (c) note thatC(uA”, V)

that other non-dominated solutions need to improve in or- . 5
. . : ___is larger tharC(V,pA") on M =4 and M = 6 for most

der to dominate it. The computational order of calculating -

. o\ K, whereas similar values are observed /dn= 8 and
the secondary ranking by these method®{9/|P|?), in M —10. Looking atFigure 8 (d) note thatmax(f;) b

.. = . axi( J;

addition to the? (M | P|?) order needed to calculate Pareto g g Jo) Y

i ; SVDOM is smaller in all objectives than by the hybrid
dominance. The reader is referred to [Koppen 07] for de- strateavuF AcRE. These re sJuIts congest th);t ovean e
tails on SVDOM and EPSDOM. gypt Aeki™. 99

hybrid strategy can find better solutions than SVDOM in
Figure 8 (a)-(d) show the normalized hypervolume be- a broader region of objective space.
tweenuF AeRF 2500 and SVDOM fordy = 1.0 (refer-

ence point far away from the Pareto front) afyd= 0.01 Next, we analyze results hyF AcR¥ and EPSDOM.
(reference point close to the Pareto front), the differential From Figure 9 (a) it can be seen that for very small

cover setC value, andnax( f;) andmin(f;) in all objec- on all M the hypervolume by.F AeR¥ is better than by
tives, respectively. Similarlyfrigure 9 (a)-(d) show re- EPSDOM, whereas for largdk similar hypervolume is

sults foruF AeR” and EPSDOM. achieved by both algorithms. FroRigure 9 (b), where
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Fig. 9 Proposed Hybrid StrategyF AeR¥ 2500 and EPSDOM) < K < 50 and4 < M < 10.

solutions in the central regions are relatively emphasized, K the hybrid strategy can find similar or better solutions
it can be seen that EPSDOM achieves better hypervolumethan EPSDOM in a broader region of objective space. For
thanuF AeR” for small values of (1 < K < 10), espe- small K there is a slight advantage by EPSDOM in terms
cially for M = 10. On the other handyF AeR” achieves  of convergence to central regions, especially ¥6r= 10
better hypervolume than EPSDOM for medium and large objectives.

K andM > 6. Note inFigure 8 (b) that SVDOM'’s best

performance is also for smal. These results suggest 8. Performance of the Proposed Hybrid Strat-

that information of closeness to dominance is more ef- egy on DTLZ Problems
fective to improve convergence on problems of moderate
complexity than on highly complex ones. Frdfigure 9 In previous sections, we have studied the hybrid strat-

(b) it should also be noted that for highly complex prob- egy using MNK-Landscapes, showing that it can signifi-

lems (largeK) the hybrid approach performs very well, cantly improve performance on many-objective non-linear
which is interesting because non-convex regions in the combinatorial optimization problems. These problems are
Pareto front increase witt [Aguirre 07] and are sup-  known to have convex fronts for low values of non-linearity

posed to hinder performance of approaches that includekK, but non-convex regions in the fronts and convergence-
scalarization by weighting sum strategies. Frigigure 9 difficulty increase with the non-linearity of the problem.

(c) note thaC (uAE V) is larger tharC (V, uA¥) on M = In this section, we study the hybrid strategy on many-
4 and M = 6 especially for largds, whereas similar val-  objective continuous problems with large number of vari-
ues are observed ob/ > 6. Note also that(V, uAF) ables and non-convex Pareto fronts, using instances with

is slightly better onkK < 7. Looking atFigure 9 (d) note different characteristics of convergence-difficulty and bias
thatmax( f;) by EPSDOM is smaller in all objectives than on density of solutions. Our aim is to verify whether a
by the hybrid strategy.FFAcR”, albeit better than SV-  simple scalarization strategy could be helpful as part of
DOM. These results suggest that for medium and largethe two-stage hybrid approach on non-convex problems,
where simple scalarization functions alone are known not



76 000o0o0o0oooO0 Vol.1 No. 1020107

H
C
T T * 1 ' T v T ™ T " T T T T T T T T
|l —o— uFAeRE800 DTLZ2 _ | 1+ E E -
1.5 K EACRE 390 I cg:, pA®) C(pA 1\31)5 . DTLZ2
--a-- AeR* T 09T g —o— 300 ]
14} .
0.8} .
"""" NSGA-II L C(N, AB)  C(AE, N)
0.7F cogeee o O--- .
0.6 -
05+ -
041 .
03
021 ]
0.1+
ok ?.‘...-..o,_._,,o'.,,_,_.vm,_,T_.»_.v..,_,,,? o
4 6 8 10
M
(a) NormalizedH (b) Set coveragé
Fig. 10 NSGA-Il, Adaptivee-RankingAe R, and hybrid methog F Ae R¥ on problem DTLZ24 < M < 10.
H c
T T T T T T T T T 1 T T T T T T T
—o— uFAeRF 800 DTLZ3 1+ E E E
13F —o— nFAER" 350 . [ COLwa) cuany) - DTS
| - AeR” 09 el —e— 300 ]
0.8 -
] S NSGAl - F R conAh canN)
0.7k e o i
0.6 -
L1f - osk
04l }“ """ f ]
T PN St % ........................ 4 03F % -
E /// E 02 u/]?ﬁ: ;J.FA!._:SRE B
N / [ /A% AeR
09F . -E - o N:  NSGA-I]
1 L { L 1 L 1 L 1 L 1 L 1 0 ?-_--?“M? o N ”w‘»?m»—'.?'”'»—? B
4 5 6 7 8 9 10 4 6 8 10
M M
(a) NormalizedH (b) Set coveragé
Fig. 11 NSGA-II, Adaptivee-RankingAe R, and hybrid methog. F Ae RE on problem DTLZ34 < M < 10.
H T T T T T T T T T c T T T T T T T
L3 DTLZ4 —o— uFAaRf 800 I C(N, pA®) C(pAf, N) DTLZ4
i —O— WFAsR"350 1 ook~ S S0 ]
2 AT AR ] sl T T B0 et ]
N N NSGA-II A °r B E A% AeR® ]
R ] orf SRAY COhd R RG]
[ . Ry T t 1
I | 0.6 -
09 1 0.5 L f,{'-.___{‘_ .
08 7 0af { {‘}‘} ]
07k - L ]
- 1 02+ 7 E
0.6 - Y 1
I | 0.1+ E’ E % % E g
051 | | | | | | L [ o e T aummnte
+ + + + + + 1 n 1 n 1 n 1
4 5 6 7 8 9 10 4 6 8 10
M M
(a) NormalizedH (b) Set coveragé

Fig. 12 NSGA-II, Adaptivee-RankingAeR¥, and hybrid methog F AeR¥ on problem DTLZ44 < M < 10.

to perform well. Also, we want to verify the extent to the average performance of the algorithms on 50 different
which difficulty on convergence and bias on distribution runs. In the plots, error bars sh@&% confidence inter-
of solutions affect the scalarization strategy on continuous vals on the mean.

domains. Below we discuss the performance of Adaptivieanking

The performance of the algorithms is verified on DTLZ2, AeR” and the hybrid strategyF Ae RF using NSGA-II
DTLZ3, and DTLZ4 continuous functions [Deb 02], set- as a reference for comparison. We study the hybrid strat-
ting the total number of variables to 100 and varying the egy varying the strategies’ switching timg, = {350,500,
number of objectived/ from 4 to 10. Results below show 650,800}, and keeping the total number of the generations
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fixed toT = 1000. In the following, for the sake of clar- ing timetg can be observed ofi but not on{. Notice
ity we only present results far = {350,800}. All algo- that better values of are observed for the early switch-
rithms are set with parent and offspring population of size ing time. This is becausgF' focuses in an increasingly
100, Simulated Binary Crossover (SBX) for recombina- narrower area of objective space for larger
tion with ratep. = 1 per individual, and polynomial mu- Thirdly, we analyze results for DTLZ4, a problem with
tation (PM) with ratel /n per decision variable. Initial set- a biased density of solutions to some of the objective space
tings for AcR” are the same used for MNK-Landscapes, planes, in order to test the ability of the algorithms to
as indicated in Section-3. The reference point to calcu- maintain a good distribution of solutions. Results are shown
late the hypervolume is set (0.01 x max (f1),---,1.01 x in Figure 12(a)and(b). Note thatdcR” performs better
max (far)), computingmax (f,,), m=1,---,M, from than NSGA-II. However, the introduction of the scalar-
the solutions generated in all runs by the algorithms. Note ization functionu F' that focuses on convergence-only de-
that DTLZ functions are minimization problems. teriorates performance of the hybrid approadiAc¢R”,
Firstly, we analyze results for function DTLZ2, which compared tadeR”. These results suggest that on prob-
has a non-convex Pareto-optimal surface that lies insidelems with highly biased distribution of solutions simple
the first quadrant of the unit hyper-spheiféigure 10(a) strategies that favor convergence without paying attention
and(b) show the normalized hypervolurt¢ and set cov-  to diversity could mislead the algorithm.
erage measui@ respectively. Looking atle R” and NSGA-
Il, from these figures note that fa¥/ = 6 objectives or 9. Conclusions
less AeRF is worse than NSGA-II ort, but similar on
C,C(N,AP)=0andC(A” N)=0. On the other hand, We have shown that a two-stage hybrid strategy that
AeR¥ is significantly better than NSGA-II for more thén uses scalarization and Pareto dominance enhanced with
objectives, both oft{ andC, C(N, A¥) = 0 andC(A¥”, N) Adaptivee-Ranking can significantly improve performance
> 0.45. These results suggest that NSGA-II achieves bet- 0n many-objective MNK-Landscapes, especially for a large
ter spread that improves hypervolume faf < 6, but it number of objectives. Also, we showed that it is feasible
cannot find solutions that dominate RZ’s solutions. In-  to simplify the scalarization strategy, which could reduce
creasingM above6, AcRE achieves better spread and Overall computational cost. In addition, we compared the
convergence than NSGA-II. Next, we look at results by hybrid strategy with Subvector Dominance Assignment
the hybrid strategy.F AcR”. From the sam&igure 10, and Epsilon Dominance Assignment, two highly effec-
note thatuF AcRE improves’H compared todeRE for tive methods to improve convergence on many-objective
M < 6, and also improve€ for all values of M. These  problems, showing that the hybrid approach can find so-
results show that the inclusion of the simple scalariza- lutions with similar or better convergence properties on
tion strategyF" helps convergence of the algorithm. Itis highly complex MNK-Landscapes, while achieving bet-
also worth mentioning that the switching time used in ter spread and distribution. We also showed that the pro-

1 F AeRF leads to slightly different values forM > 6, posed hybrid strategy can significantly improve perfor-
but those differences are not captured#y This is be- mance on many-objective continuous functions with non-
cause the reference point used to calculdtés located ~ convex Pareto fronts, especially on problems having a large
relatively far away from the Pareto front pfF' AcRZ, in number of local fronts that increase the difficulty to con-
which case differences in convergence are difficult to de- verge. However, the simple scalarization function can be
tect with theH measure. misleading on problems with large bias on distribution of

Secondly, we analyze results for DTLZ3, a variation of SClutions, in which case AdaptiveRanking alone is su-
DTLZ2 that introduces a large number of local Pareto- perior. In the future, we would like to look into adaptive
optimal fronts in order to test the convergence ability of strategies to switch between stages avoiding the negative
the algorithm. Results for DTLZ3 are showrfiigure 11(a) effects of large biases on distribution of solutions, and try
and(b). From these figures note that the inclusion of the Other scenarios to deploy the individual strategies.
scalarization functionu /" improvesH and( for all val-
ues of M. These results suggest that on non-convex con-Acknowledgments
tinuous problems of increased convergence-di-fficulty, the ~ This study was performed through Special Coordination
introduction of the scalarization strategy in the hybrid ~ Funds for Promoting Science and Technology of the Min-
approach works effectively to improve the performance of istry of Education, Culture, Sports, Science and Technol-
the algorithm. Similar to DTLZ2, the effects of the switch- 09y, of the Japanese Government.
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