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Summary

This work proposes a hybrid strategy in a two-stage search process for many-objective optimization. The
first stage of the search is directed by a scalarization function and the second one by Pareto selection enhanced with
Adaptive ε-Ranking. The scalarization strategy drives the population towards central regions of objective space,
aiming to find solutions with good convergence properties to seed the second stage of the search. Adaptiveε-Ranking
balances the search effort towards the different regions of objective space to find solutions with good convergence,
spread, and distribution properties. We test the proposed hybrid strategy on MNK-Landscapes and DTLZ problems,
showing that performance can improve significantly. Also, we compare the effectiveness of applying either Adaptive
ε-Ranking or NSGA-II’s non-domination sorting& crowding distance in the second stage, clarifying the necessity of
Adaptiveε-Ranking. In addition, we include a comparison with two substitute assignment distance methods known
to be very effective to improve convergence on many-objective problems, showing that the proposed hybrid approach
can find solutions with similar or better convergence properties on highly complex problems, while achieving better
spread and distribution.

1. Introduction

Recently, there is a growing interest on applying multi-

objective evolutionary algorithms (MOEAs) to solvemany-

objective optimization problems with four or more ob-

jective functions. In general, conventional MOEAs [Deb

01, Coello 02] scale up poorly with the number of objec-

tives and new evolutionary algorithms are being proposed

[Ishibuchi 08]. Research has focused mainly on the effec-

tiveness of selection, dimensionality reduction, incorpora-

tion of user preferences, and space partitioning.

The lack of discriminatory power by Pareto dominance

and a poor scalability of density estimators affect seri-

ously the performance of conventional Pareto MOEAs in

many-objective spaces. Likewise, the number of scalar-

ization functions required for many-objective optimiza-

tion increases substantially the complexity of scalariza-

tion based MOEAs. These are serious issues that have

motivated research on methods to improve selection in

MOEAs for many-objective optimization (see below for

related works).

Dimensionality reduction approaches try to reduce the

number of objectives the evolutionary algorithm uses to

solve the problem [Deb 06b, Brockhoff 07, López Jaimes

08]. Here the main challenge consists in how to determine

a minimum set of objectives functions that preserves most

of the characteristics of the original problem. When such

reductions are possible, the (lower dimensional) problem

becomes more amenable to the evolutionary algorithm and

to the decision maker as well. However, even if dimen-

sionality reduction is possible, there is no guarantee that

the new dimension of the problem will be low enough to

overcome the problems of weak selection pressure of con-

ventional MOEAs.

Methods that focus on the incorporation of user prefer-

ences aim to provide the MOEA with a reference point so

that it can concentrate its search on a small region of the

Pareto front [Deb 06a]. Incorporation of user preferences

is a very interesting and useful approach, however here

the assumptions are that the user has a clear idea about the

Pareto front and knows where to look for solutions. When

such knowledge does not exist, we first need methods that

can search effectively in many-objective spaces and gen-

erate an approximation of the Pareto front.

Space partitioning [Aguirre 09] instantaneously parti-

tions the objective space into few lower dimensional sub-

spaces and concurrently searches in each of them, aim-
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ing to find good approximations of the true Pareto front in

the original high-dimensional objective space. Space par-

titioning uses a partition strategy to define a schedule of

subspace sampling, so that different subspaces can be em-

phasized at different generations. This approach has been

used effectively to improve the effectiveness of selection

in high dimensional spaces, and could be used as a frame-

work for dynamic dimensionality reduction, and to realize

parallel implementations of many-objective optimization

algorithms.

In practice, the optimization of many-objective real-world

problems is not a single step process. Rather, it often con-

sists of a series of steps in which the above mentioned ap-

proaches could be used to complement and support each

other. Thus, research to improve and combine these ap-

proaches is important to foster further developments on

many-objective optimization.

This work focuses on the effectiveness of selection on

many-objective optimization. Some methods have been

proposed to improve Pareto selection for many-objective

optimization by incorporating indicator functions or ex-

tensions of Pareto dominance [Zitzler 04, Emmerich 05,

Corne 07, Kukkonen 07, Ishibuchi 07b, Koppen 07, Sato

07]. Most of these methods induce a different ranking

based on information of how close solutions are to domi-

nate other non-dominated solutions and have been proved

effective to improve convergence at the expense of spread

or vice-versa. To rank solutions, these methods compare

each solution with all other solutions, bringing the com-

putational order toO(M |P |2), whereM is the number

of objectives and|P | the population size. Other methods

are based on scalarization functions that map the multi-

objective problem to a single-objective one [Ishibuchi 07a,

Hughes 05]. Since a scalarization function defines a search

direction around a single point in objective space, to try

to uniformly search the objective space and find good ap-

proximations of the Pareto front, very many scalarization

functions must be specified. The computational order of

ranking with one scalarization functions isO(M |P |). How-

ever, usually the number of scalarization functions for many-

objective optimization is of the same order of the popula-

tion size, making the overall computational order similar

toO(M |P |2).

In this work, we propose a hybrid strategy in a two-stage

search process. The first stage of the search is directed by

a scalarization function and the second one by Pareto se-

lection enhanced with Adaptiveε-Ranking [Aguirre 09].

The scalarization function provides a computationally fast

unifying search direction to drive the population towards

central regions of objective space, aiming to find a sub-

set of solutions with good convergence properties. On the

other hand, Adaptiveε-Ranking uses the local information

of the distribution of solutions to balance the search effort

towards the different regions of objective space, increasing

the discriminatory power of Pareto selection while intro-

ducing simultaneously a density estimator that scales-up

well on high dimensional spaces, to find solutions with

good convergence, spread, and distribution properties.

We study the effects of the scalarization and Adaptive

ε-Ranking applied independently. Then, we study the ef-

fects of the proposed hybrid strategy, showing that it can

significantly outperform its individual components. Also,

since the hybrid strategy uses just one scalarization func-

tion during the first stage, it becomes considerably faster,

which is an important issue for scalability on high-dimen-

sional spaces. Fixing scalarization as the first stage strat-

egy, we compare Adaptiveε-Ranking and NSGA-II’s non-

domination sorting& crowding distance as the strategy

for the second stage, clarifying the necessity of Adap-

tive ε-Ranking. Also, we compare the proposed hybrid

strategy with Subvector Dominance Assignment and Ep-

silon Dominance Assignment [Koppen 07], two substi-

tute assignment distance methods known to be very effec-

tive to improve convergence on many-objective problems,

showing that the hybrid approach can found solutions with

similar or better convergence properties on highly com-

plex problems, while achieving better spread and distribu-

tion. As benchmark instances we use MNK-Landscapes

[Aguirre 07] with 4 ≤M ≤ 10 objectives,N = 100 bits,

and0 ≤K ≤ 50 epistatic interactions per bit. In addition,

we test the proposed hybrid strategy on continuous prob-

lems with non-convex fronts using DTLZ functions with

4 ≤M ≤ 10 objectives and 100 variables. Parts of this

work have been presented in [Aguirre 10b] and [Aguirre

10c].

2. Proposed Hybrid Strategy

2·1 Concept

Multi-objective optimizers seek to find trade-off solu-

tions with good properties of convergence to the Pareto

front, well spread and uniformly distributed along the front.

These three properties are especially difficult to achieve

in many-objective problems and most searching strategies

compromise one in favor of the other. In addition, larger

population sizes are likely to be required in order to create

an appropriate approximation of the Pareto front in high

dimensional spaces. Both, larger populations and high di-

mensionality, impose a serious challenge to the computa-

tional scalability of current algorithms.
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Fig. 1 Hybrid Strategy

Seeking to find approximations of the Pareto front ful-

filling the three properties of convergence, spread, and dis-

tribution, rather than expecting a sole strategy to work

efficiently for all tasks, it seems reasonable to distribute

the search into different strategies that complement each

other. The proposed hybrid strategy follows this approach,

using one strategy from the domain of scalarization that

focus on convergence-only and the other one from the do-

main of Pareto dominance and its extensions (Adaptive

ε-Ranking) that in addition to convergence also pays at-

tention to diversity. The strategies are deployed following

a two-stage scenario, assigning one strategy to each stage,

where the first strategy works to seed the second one, as il-

lustrated inFigure 1. The expectation for the hybrid strat-

egy is that better results could be achieved by diversifying

the population after some degree of convergence has been

achieved than by emphasizing convergence and diversity

since the beginning of the search, where the population

is random. Also, by simplifying the scalarization strategy

to one scalarizing function, it is expected that the hybrid

method could speed up the search.

2·2 Scalarization StrategyµF

Scalarization functions have played an essential role in

solving multi-objective optimization problems. In scalar-

ization, the multi-objective problem is transformed into

one or a series of single objective optimization problems,

involving possibly some parameters or constraints in or-

der to capture some kind of preference information from

the decision maker. Many different scalarization functions

have been suggested in the literature based on different ap-

proaches and multi-objective optimization methods utilize

them in various ways. The input requested from the deci-

sion maker may consist on trade-off information, marginal

rates of substitution, desirable objective function values,

or a reference point. Furthermore, the scalarization may

be performed once or repeatedly as a part of an iterative

process in which the decision maker is directly involved.

In multi-objective evolutionary algorithms the most fre-

quently used scalarization functions are weighted sum fit-

ness functions with non-negative weight vector, reference

point-based fitness function, andε-constrained fitness func-

tion. Weighted sum fitness functions, expressed by

fitness(x) = w1f1(x) +w2f2(x) + · · ·wMfM (x), (1)

set with different weight vectorsw = (w1,w2, · · · ,wM )
were successfully used to specify various search direc-

tions to search concurrently on them by multi-objective lo-

cal search algorithms [Ishibuchi 98, Jaskiewics 02]. Very-

many weighted sum fitness functions have also been used

for many-objective optimization [Hughes 05], as mentioned

in previous sections. The reference point-based fitness

function is the distance from the original fitness values of a

solutionf(x) to a desired reference point in the objective

spacef∗ = (f∗1 , f
∗
2 , · · · , f∗M ), i.e.

fitness(x) = distance(f∗,f(x)). (2)

The incorporation of reference points into MOEAs was

examined in [Deb 06a]. Theε-constrained fitness func-

tion is based on the wide spreadε-constrain approach, in

which lower (or upper) bounds for some objectives are

specified by inequality conditions. The incorporation of a

ε-constrained fitness function into MOEAs was examined

in [Ishibuchi 07a] using the following function

fitness(x) = fk(x)−α
k−1∑

i=1

max{0, fi(x)}, (3)

where lower bounds were specified for the the first (k-

1) objectives such thatfi(x) ≥ εi, εi specifies the lower

bound of the i-th objective, andα is a penalty with respect

to the violation of the inequality condition. In the above

fitness functions, the weights, the reference point, and the

lower bounds for some objectives allow to specify one or

more regions of interest for the evolutionary algorithm to

focus on.

In our method, the role of the scalarization strategy is to

provide a computationally-fast unifying search direction

to drive the population towards central regions of objec-

tive space, so that solutions with good convergence could

be found to seed the second stage of the search. That is,

for computational reason we are interested on using only

one scalarization function and our region of interest is the

central part of objective space. A weighted sum function,

set with equal weights for all objectives, can fulfill these

requirements without requiring knowledge of the problem

at hand [Ishibuchi 07b]. Thus, in this work we use the
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following scalarizing function,

g =
1
M

M∑

i=1

fi, (4)

wherefi denotes thei-th objective value andM the num-

ber of objectives.

2·3 Adaptiveε-Ranking StrategyAεRE

Pareto ranking classifies the entire population in one or

more sets of equally ranked solutionsFi (i = 1, · · · ,NF ),

each set associated to ranki. On many-objective prob-

lems the number of Pareto non-dominated solutions in-

crease substantially with the dimensionality of the objec-

tive space and|F1| usually becomes larger than the size of

the parent population|P | from early generations [Aguirre

07].

ε-Ranking re-classifies the setsFi (i = 1, · · · ,NF ) into

setsFεj (j = 1, · · · ,N ε
F ), N ε

F ≥NF , using a randomized

sampling procedure that favors a good distribution of solu-

tions based on dominance regions wider than conventional

Pareto dominance (ε-dominance). The sampling heuristic

favors an effective search using the following criteria.(i)
Extreme solutions are always part of the sample.(ii) Each

(not extreme) sampled solution is the sole sampled repre-

sentative of its area of influence, which is determined by

ε-dominance. (iii) Sampling of (not extreme) solutions

follows a random schedule. These criteria aim to balance

the search effort towards the different regions of objec-

tive space, increasing the discriminatory power of Pareto

selection while simultaneously introducing a density esti-

mator that scales-up well on high dimensional spaces, to

find solutions with good convergence and diversity (spread

and distribution) properties.

The number of rank-1 solutions|Fε1 | after reclassifica-

tion depends on the value set toε (≥ 0). Larger values

of ε imply that sampled solutionsε-dominate larger areas,

increasing the likelihood of having moreε-dominated so-

lutions excluded from the sample that formFε1 . Adap-

tive ε-Ranking adaptsε at each generation so that|Fε1 | is
close to the size of the parent population|P|. The adap-

tation rule takes advantage of the correlation betweenε

and the number ofε-nondominated solutions in the sam-

ple. Basically, if|Fε1 | > |P| it increases the step of adapta-

tion ∆←min(∆× 2,∆max) andε← ε+ ∆. Otherwise,

if |Fε1 | < |P| it decreases∆←max(∆× 0.5,∆min) and

ε←max(ε−∆,0.0). The appropriate value ofε that ap-

proaches|Fε1 | to |P| is expected to change as the evolution

process proceeds, it is problem dependent, and affected

by the stochastic nature of the search that alters the in-

stantaneous distributions of solutions in objective space.

Adaptation ofε and its step of adaptation∆ is important

to properly follow the dynamics of the evolutionary pro-

cess on a given problem.

3. Test Problems

3·1 Multi-objective MNK-Landscapes

A multi-objective MNK-Landscape [Aguirre 07] is a

vector function that maps binary strings into real num-

bersf(·) = (f1(·), f2(·), · · · , fM (·)) : BN →<M , where

M is the number of objectives,fi(·) is the i-th objec-

tive function,B = {0,1}, andN is the bit string length.

K = {K1, · · · , KM} is a set of integers whereKi (i =
1,2, · · · ,M ) is the number of bits in the string that epistat-

ically interact with each bit in thei-th landscape. Each

fi(·) can be expressed as an average ofN functions as

follows

fi(x) =
1
N

N∑

j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
) (5)

wherefi,j : BKi+1→< gives the fitness contribution of

bit xj to fi(·), andz(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
are theKi bits

interacting with bitxj in the stringx. The fitness contri-

butionfi,j of bit xj is a number between [0.0, 1.0] drawn

from a uniform distribution. Thus, eachfi(·) is a non-

linear function ofx expressed by a Kauffman’s NK-Lands-

cape model of epistatic interactions [Kauffman 93]. In

addition, it is also possible to arrange the epistatic pat-

tern between bitxj and theKi other interacting bits. That

is, the distributionDi = {random,nearest neighbor} of

Ki bits amongN . Thus,M ,N ,K = {K1,K2, · · · ,KM},
andD = {D1,D2, · · · , DM}, completely specify a multi-

objective MNK-Landscape.

3·2 DTLZ Problems

To study the performance of the proposed algorithm on

continuous functions with non-convex Pareto fronts, the

functions DTLZ2, DTLZ3 and DTLZ4 of the DTLZ test

functions family [Deb 02] are used. These functions are

scalable in the number of objectives and variables and thus

allow for a many-objective study. DTLZ2 has a non-convex

Pareto-optimal surface that lies inside the first quadrant

of the unit hyper-sphere. DTLZ3 and DTLZ4 are varia-

tions of DTLZ2. DTLZ3 introduces a large number of lo-

cal Pareto-optimal fronts in order to test the convergence

ability of the algorithm. DTLZ4 introduces biases on the

density of solutions to some of the objective-space planes

in order to test the ability of the algorithms to maintain a

good distribution of solutions. For a detailed description

of these problems the reader is referred to [Deb 02].
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4. Method of Analysis

In this work, we use the hypervolumeH and the set cov-

erageC [Zitzler 99] to evaluate the performance of the al-

gorithms, complementing our analysis with the maximum

max(fi) and minimummin(fi) fitness values found in

each objective. The measureC provides information on

convergence.C(A,B) gives the fraction of solutions in set

B that are dominated at least by one solution in setA.

H is a measure of convergence and diversity, calculated

as the volume of theM -dimensional region in objective

space enclosed by the set of non-dominated solutions and

a dominated reference point. If the reference point is very

close to the Pareto front, non-dominated solutions around

the center region of the Pareto front are relatively em-

phasized in the hypervolume calculation. On the other

hand, if the reference point is far from the Pareto front,

non-dominated solutions along the extreme regions of the

Pareto front are emphasized in the hypervolume calcula-

tion. The hypervolume has become widely used to analyze

the performance of multi-objective optimizers. However,

results on the hypervolume are usually reported using a

single reference point, which provides only a partial vi-

sion of the results obtained. In many-objective problems,

particularly, it is difficult to grasp the convergence and

diversity properties of the solutions obtained and report-

ing results using one reference point could often lead to

overstated and sometimes erroneous conclusions about the

overall performance of the algorithms. Analysis of hyper-

volume varying the reference point provides more insights

on the distribution of the obtained solutions and helps clar-

ify the relative contribution to the hypervolume of solu-

tions that converge to the central regions of the space and

those that contribute to diversity (spread). To enrich our

analysis, we compute the hypervolume using different ref-

erence points. The reference pointrdR = (r1, r2, · · · , rM )
is calculated by

ri = (1.0− dR)×min(fi), i = 1,2, · · · ,M, (6)

wheremin(fi) is the minimum value of thei-th objec-

tive function observed in the joined sets of Pareto optimal

solutions found by the algorithms we compare, anddR

is a parameter that determines the distance of the refer-

ence point to the minimum values found for each objec-

tive function(min(f1),min(f2), · · · ,min(fM )). In this

work, we usedR = {0.01,0.1,0.3,0.5,0.7,1.0} to set the

reference pointrdR = (r1, r2, · · · , rM ). Note that we max-

imize all objective functions and the allowed range for all

fi is [0.0,1.0]. Hence,dR = 0.01 means that the reference

point isrdR = 0.99× (min(f1),min(f2), · · · ,min(fM ))

and thus very close to the Pareto front, whereasdR =
1.0 means thatrdR = (0.0,0.0, · · · ,0.0) and far from the

Pareto front. To calculateH, we use Fonseca et al. [Fon-

seca 06] algorithm.

5. Performance of the Proposed Hybrid Strat-
egy on MNK-Landscapes

5·1 Preparation

The performance of the algorithms is verified on MNK-

Landscapes with4 ≤M ≤ 10 objectives,N = 100 bits,

number of epistatic interactionsK = {0,1,3,5, 7,10,15,
25,35,50} (K1, · · · ,KM = K), andrandomepistatic pat-

terns among bits in all objectives (D1, · · · ,DM= random).

Results presented below show the average performance of

the algorithms on 50 different problems randomly gener-

ated for each combination ofM , N andK. In the plots,

error bars show95% confidence intervals on the mean.

In this work, we implement the proposed hybrid strat-

egy using NSGA-II [Deb 00] as a host algorithm, modify-

ing it accordingly to include the scalarization andAεRE

strategies. During the first stage, selection is based solely

on the scalarization function, whereas in the second stage

AεRE is applied after Pareto dominance. All algorithms

used in our study are set with parent and offspring pop-

ulations of size|P| = |Q| = 100, two point crossover for

recombination with ratepc = 0.6, and bit flipping muta-

tion with ratepm = 1/N per bit. The number of evalua-

tions is set to3× 105 (T = 3000 generations). InAεRE ,

initially ε = 0.0, the initial value of the step of adapta-

tion is∆0 = 0.005 (0.5%) and its maximum and minimum

values are set to∆max = 0.05 (5%) and∆min = 0.0001
(0.01%).

5·2 Effects of Individual Components

§ 1 Adaptive ε-Ranking Strategy

In this section we discuss the performance of Adaptive

ε-Ranking Strategy (AεRE) using NSGA-II as a reference

for comparison.Figure 2(a)shows the normalized hyper-

volumeH betweenAεRE and NSGA-II varying the ref-

erence point forK = 7 andM = {4,6,8,10} landscapes.

From this figure it can be seen thatAεRE attains better

H for all values ofM regardless of the reference point.

Also, note the increasing slopes of theH curves as the

reference point gets closer to the Pareto front, i.e. varying

dR from 1.0 to 0.01. These results suggest that solutions

by AεRE are better than solutions by NSGA-II particu-

larly in the central regions of the objective space. Notice

that the slope of theH curve becomes steeper by increas-

ing the number of objectives fromM = 4 to M = 6, but
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AεRE  M 4 M 6 M 8 M 10
H

dR

 NSGA-II
K=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.811.2
1.41.61.8
22.22.4

2.62.83
3.23.43.6
3.8

C(N, AE)  C(AE, N)     
AE:  AεREN:  NSGA-IIC

M

K = 7

4 6 8 1000.1
0.20.30.40.50.60.70.80.91

(a) NormalizedH (b) Set coverageC
Fig. 2 Adaptiveε-Ranking,K = 7, 4 ≤M ≤ 10.

max fm   min fm    NSGA-II   AεRE
M=8, K=7

m objective

fitness

1 2 3 4 5 6 7 80.250.30.350.40.450.50.550.60.650.70.750.8 M=8, K=7

m objective

fitness
           µFmax fm   min fm   

1 2 3 4 5 6 7 80.250.30.350.40.450.50.550.60.650.70.750.8

(a) Adaptiveε-Ranking (b) Scalarization strategy
Fig. 3 max(fm) andmin(fm),K = 7.

   µF  M 4 M 6 M 8 M 10 NSGA-II

H

dR

K=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.811.2
1.41.61.8
22.22.4

2.62.83
3.23.43.6
3.8 µ:  µFN:  NSGA-IIC(N, µ)  C(µ, N)   

C

M

K = 7

4 6 8 1000.10.20.30.40.50.60.70.80.91

(a) NormalizedH (b) Set coverageC
Fig. 4 Scalarization strategy,K = 7 and4 ≤M ≤ 10.

it gradually recedes forM = 8 andM = 10 compared to

M = 6. This is an indication that the convergence abili-

ties ofAεRE reduce forM > 6, especially to the central

regions of objective space.

Figure 2(b) shows results using theC coverage mea-

sure. Note thatC(AE ,N), the fraction of NSGA-II’s so-

lutions dominated byAεRE ’s solutions, is almost0.9 for

M = 4 and reduces progressively withM until it approaches

0.2 for M = 10. On the contrary,C(N,AE) is zero for

all M , which means that no solution byAεRE is domi-

nated by NSGA-II’s solutions. These results confirm the

superiority ofAεRE over NSGA-II and corroborate the

decreasing convergence power ofAεRE for large values

of M .

Figure 3(a) shows the maximum and minimum fitness,

max(fm) andmin(fm), of solutions in the Pareto front

found by NSGA-II andAεRE forK = 7 andM = 8 land-

scapes. From this figure, it can be seen that NSGA-II

andAεRE achieve similarmax(fm). However,min(fm)
is lower by NSGA-II. Similar values ofmax(fm) sug-
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1.41.61.8
22.22.4
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3.23.43.6
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1.41.61.8
22.22.4
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3.23.43.6
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(a) NormalizedH,M = 6 (b) NormalizedH,M = 8 µFAεRE 2500 µFAεRE 2000 µFAεRE 1500 µFAεRE 1000 µF AεRE NSGA-II

H

dR

M=10, K=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.811.2
1.41.61.8
22.22.4

2.62.83
3.23.43.6
3.8

C(N, µAE)  C(µAE, N)        1000        2500C(N, AE)    C(AE, N)      C(N, µ)      C(µ, N)      

µAE:  µFAεREAE:    AεREN:      NSGA-IIµ:      µF
C

M
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Fig. 5 Proposed Hybrid Strategy,K = 7 and4 ≤M ≤ 10.

gest that spread by the algorithms is comparable, but the

lower values ofmin(fm) suggest that solutions by NSGA-

II seem to be trapped in lower local optima. Another in-

teresting property ofAεRE is that solutions in the Pareto

front areε-nondominated, which gives a good distribution

of solutions.

§ 2 Scalarization Strategy
In this section we analyze the scalarization strategy (µF ).

Figure 4(a) shows the normalizedH betweenµF and

NSGA-II varying the reference point onK = 7 andM =
{4,6,8,10} landscapes. ComparingH by looking atFig-
ure 4(a) and Figure 2(a), it can be seen that onM =
{4,6} landscapesµF is significantly worse thanAεRE

for any value ofdR. OnM = 8 landscapes,µF is still

worse thanAεRE for dR ≥ 0.1, but similar toAεRE for

dR = 0.01. However, onM = 10 landscapes,µF is better

thanAεRE for dR < 0.5. These results suggest thatµF

gets better compared toAεRE in terms of convergence

to central regions when the number of objectives is above

eight.

Figure 4(b) showsC betweenµF and NSGA-II. Note

that for any number of objectives, the values ofC(µF,N)
are similar and above0.5, meaning that more than half of

the solutions by NSGA-II are dominated by solutions of

µF . Comparing withFigure 2(b), note thatC(µ,N) <
C(AE ,N) for M ≤ 7, butC(µ,N) > C(AE ,N) for M ≥
8. These results are in accordance with the observations

made forH, and confirm the better convergence proper-

ties ofµF on landscapes with more than eight objectives.

However, note thatµF converges to a narrow area, as

shown inFigure 3(b) that plots themax(fm) andmin(fm)
of the non-dominated set found byµF . Overall, these re-

sults shows that the scalarization strategyµF converges

well, albeit to a narrow region. The similar values of

C(µF ,N ) for all M is an interesting property ofµF . It

shows that this strategy in terms of convergence can scale

up to a large number of objectives, suggesting that it could

be useful as part of the hybrid strategy.

5·3 Effects of the Hybrid Strategy

In this section we analyze the hybrid strategy that com-

bines in a two-stage process scalarization and Adaptive

ε-Ranking (µFAεRE). µFAεRE first starts withµF and

then at generationtS it switches toAεRE . Figure 5 (a)-
(c) showH by µFAεRE onM = {6,8,10} landscapes,

respectively, varyingtS = {1000,1500, 2000,2500} and

keeping the total number of the generations fixed toT =
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Fig. 6 Adaptiveε-RankingAεRE and Proposed Hybrid StrategyµFAεRE , 0 ≤K ≤ 50 and4 ≤M ≤ 10.

3000. The same figures also include results byµF and

AεRE for comparison. Note that onM = 6 the inclu-

sion ofµF does not improveH (actually, onM = 4 for

which results are not shown,H reduces by includingµF ,

with larger reductions observed for late switching times

tS). However, switching fromµF toAεRE during the run

can improveH substantially (dR = 0.01) onM = 8 and

M = 10, with a late switching time (tS = 2500) working

better than an early one.

Figure 5 (d) showsC values betweenµFAεRE and

NSGA-II for tS = {1000, 2500}. We also include results

by µF andAεRE for comparison. Results onC con-

firm our observations onH and give a clearer picture of

the effects of includingµF . Note thatµFAεRE shows

relatively better convergence thanAεRE and the impor-

tance of late switching timestS for M ≥ 7. Also, it can

be seen that convergence is better thanµF for M ≤ 9 if

tS = 2500. For M = 10 similar convergence toµF is

observed. However,µFAεRE tS = 2500 shows signifi-

cantly betterH thanµF onM = 10 as shown inFigure 5
(c).

Figure 6 show results byAεRE andµFAεRE (tS =
2500), varyingK from 0 to 50 to observe the scalabil-

ity of the algorithms on problems of increased epistasis.

From these figures, note that similar toK = 7, onM = 4
performance deteriorates slightly by includingµF , espe-

cially in terms of convergence, whereas onM = 6 H and

C are similar by both algorithms. On the other hand, on

M = 8 andM = 10 the inclusion ofµF leads to better

H andC on a broad range ofK (K ≥ 1). SinceµF is

just one scalarazing function, its computation is faster than

Pareto ranking based approaches. Thus, the hybrid strat-

egyµFAεRE (tS = 2500) is also substantially faster than

AεRE , which becomes relevant for scalability on high di-

mensional spaces.

6. Scalarization and NSGA-II

In this section we analyze a two-stage method using the

scalarization strategyµF in the first stage and NSGA-II’s

non-domination sorting& crowding distance strategy in

the second stage. We call this two-stage methodµFN

for short. By comparing the performance ofµFN and

the proposedµFAεRE , we aim to clarify the necessity of

Adaptiveε-RankingAεRE .

Figure 7 shows results byµFN varying the switching

time between stagestS = {1000,1500,2000,2500} on land-
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Fig. 7 Two-stage Strategy using Scalarization and NSGA-II’s Non-domination Sorting & Crowding Distance,K = 7

and4 ≤M ≤ 10.

scapes withM = {4,6,8,10} objectives andK = 7 epistatic

interactions. We also include results by NSGA-II, scalar-

izationµF alone, and the proposed hybridµFAεRE (tS =
2500) for comparison.

From Figure 7 (a)-(c) note that the two-stage method

µFN achieves better hypervolumeH than NSGA-II and

that later switching times work better than early ones. How-

ever, hypervolume byµFN is considerably lower than

by µF alone, especially for reference points close to the

Pareto front. These results on hypervolume contrast sharply

with those achieve by the hybridµFAεRE , which are

considerably better thanµF as shown in the same fig-

ures. FromFigure 7 (d), a similar conclusion can be

reached on the set coverageC. Note thatC(µFN,N) is

in the range [0.1,0.35] fortS = 1000 and [0.2,0.55] for

tS = 2500, which means thatµFN dominates NSGA-II’s

solutions. However,C(µF,N) andC(µFAE ,N ) are su-

perior. (NSGA-II does not dominate solutions by other

algorithms, labeled asC(N,∼) in the figure). These re-

sults suggest that the second stage based on NSGA-II’s

non-domination sorting& crowding distance cannot take

advantage of the well-converged solutions found byµF in

the first stage of the search, whereas Adaptiveε-Ranking

AεRE adds to the good performance of the scalarization

strategyµF further enhancing convergence, spread, and

distribution of solutions.

7. Comparison with Substitute Assignment
Distance Methods

In this section we compare performance between the hy-

brid strategyµFAεRE and two substitute distance assign-

ment methods, namely Subvector Dominance Assignment

(SVDOM) and Epsilon Dominance Assignment (EPSDOM)

[Koppen 07]. Similar to the hybrid strategy, SVDOM and

EPSDOM were initially proposed using the NSGA-II frame-

work. SVDOM and EPSDOM keep Pareto dominance as

the primary ranking of solutions, but replace the diversity

estimator with a substitute assignment distance to assign

the secondary ranking of solutions favoring convergence

exclusively. Our motivation is to understand the effective-

ness of the hybrid strategy that seeks to balance conver-

gence, spread, and distribution against two highly effec-

tive strategies such SVDOM and EPSDOM that focus on
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Fig. 8 Proposed Hybrid StrategyµFAεRE 2500 and SVDOM,0 ≤K ≤ 50 and4 ≤M ≤ 10.

convergence exclusively [Aguirre 10a].

The substitute distance that determines the secondary

ranking of solutions in SVDOM and EPSDOM are based

on measurement procedures that calculate the highest de-

gree to which a solution is nearly Pareto dominated by any

other non-dominated solution [Koppen 07] (closeness to

dominance). SVDOM re-ranks a non-dominated solution

based on the number of objectives that are better in other

non-dominated solutions. On the other hand, EPSDOM

re-ranks a non-dominated solution based on the magnitude

that other non-dominated solutions need to improve in or-

der to dominate it. The computational order of calculating

the secondary ranking by these methods isO(M |P |2), in

addition to theO(M |P |2) order needed to calculate Pareto

dominance. The reader is referred to [Koppen 07] for de-

tails on SVDOM and EPSDOM.

Figure 8 (a)-(d) show the normalized hypervolume be-

tweenµFAεRE 2500 and SVDOM fordR = 1.0 (refer-

ence point far away from the Pareto front) anddR = 0.01
(reference point close to the Pareto front), the differential

cover setC value, andmax(fi) andmin(fi) in all objec-

tives, respectively. Similarly,Figure 9 (a)-(d) show re-

sults forµFAεRE and EPSDOM.

Firstly, we analyze results byµFAεRE and SVDOM.

From Figure 8 (a) and (b) it can be seen that overall on

all M the hypervolume byµFAεRE is better than by SV-

DOM. It should be highlighted thatFigure 8 (a) shows

the hypervolume calculated setting a reference point far

away from the Pareto front, which emphasizes the contri-

bution of solutions located along the extreme regions of

the Pareto front. On the other hand, inFigure 8 (b) a ref-

erence point close to the Pareto front is used to emphasize

the contribution of solutions located in central regions of

the Pareto front. FromFigure 8 (c) note thatC(µAE ,V )
is larger thanC(V,µAE) onM = 4 andM = 6 for most

K, whereas similar values are observed onM = 8 and

M = 10. Looking atFigure 8 (d) note thatmax(fi) by

SVDOM is smaller in all objectives than by the hybrid

strategyµFAεRE . These results suggest that overall the

hybrid strategy can find better solutions than SVDOM in

a broader region of objective space.

Next, we analyze results byµFAεRE and EPSDOM.

From Figure 9 (a) it can be seen that for very smallK

on allM the hypervolume byµFAεRE is better than by

EPSDOM, whereas for largerK similar hypervolume is

achieved by both algorithms. FromFigure 9 (b), where
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Fig. 9 Proposed Hybrid StrategyµFAεRE 2500 and EPSDOM,0 ≤K ≤ 50 and4 ≤M ≤ 10.

solutions in the central regions are relatively emphasized,

it can be seen that EPSDOM achieves better hypervolume

thanµFAεRE for small values ofK (1 ≤K ≤ 10), espe-

cially for M = 10. On the other hand,µFAεRE achieves

better hypervolume than EPSDOM for medium and large

K andM ≥ 6. Note inFigure 8 (b) that SVDOM’s best

performance is also for smallK. These results suggest

that information of closeness to dominance is more ef-

fective to improve convergence on problems of moderate

complexity than on highly complex ones. FromFigure 9
(b) it should also be noted that for highly complex prob-

lems (largeK) the hybrid approach performs very well,

which is interesting because non-convex regions in the

Pareto front increase withK [Aguirre 07] and are sup-

posed to hinder performance of approaches that include

scalarization by weighting sum strategies. FromFigure 9
(c) note thatC(µAE ,V ) is larger thanC(V,µAE) onM =
4 andM = 6 especially for largeK, whereas similar val-

ues are observed onM ≥ 6. Note also thatC(V,µAE)
is slightly better onK ≤ 7. Looking atFigure 9 (d) note

thatmax(fi) by EPSDOM is smaller in all objectives than

by the hybrid strategyµFAεRE , albeit better than SV-

DOM. These results suggest that for medium and large

K the hybrid strategy can find similar or better solutions

than EPSDOM in a broader region of objective space. For

smallK there is a slight advantage by EPSDOM in terms

of convergence to central regions, especially forM = 10
objectives.

8. Performance of the Proposed Hybrid Strat-
egy on DTLZ Problems

In previous sections, we have studied the hybrid strat-

egy using MNK-Landscapes, showing that it can signifi-

cantly improve performance on many-objective non-linear

combinatorial optimization problems. These problems are

known to have convex fronts for low values of non-linearity

K, but non-convex regions in the fronts and convergence-

difficulty increase with the non-linearity of the problem.

In this section, we study the hybrid strategy on many-

objective continuous problems with large number of vari-

ables and non-convex Pareto fronts, using instances with

different characteristics of convergence-difficulty and bias

on density of solutions. Our aim is to verify whether a

simple scalarization strategy could be helpful as part of

the two-stage hybrid approach on non-convex problems,

where simple scalarization functions alone are known not
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Fig. 10 NSGA-II, Adaptiveε-RankingAεRE , and hybrid methodµFAεRE on problem DTLZ2,4 ≤M ≤ 10.
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Fig. 11 NSGA-II, Adaptiveε-RankingAεRE , and hybrid methodµFAεRE on problem DTLZ3,4 ≤M ≤ 10.
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Fig. 12 NSGA-II, Adaptiveε-RankingAεRE , and hybrid methodµFAεRE on problem DTLZ4,4 ≤M ≤ 10.

to perform well. Also, we want to verify the extent to

which difficulty on convergence and bias on distribution

of solutions affect the scalarization strategy on continuous

domains.

The performance of the algorithms is verified on DTLZ2,

DTLZ3, and DTLZ4 continuous functions [Deb 02], set-

ting the total number of variables to 100 and varying the

number of objectivesM from 4 to 10. Results below show

the average performance of the algorithms on 50 different

runs. In the plots, error bars show95% confidence inter-

vals on the mean.

Below we discuss the performance of Adaptiveε-Ranking

AεRE and the hybrid strategyµFAεRE using NSGA-II

as a reference for comparison. We study the hybrid strat-

egy varying the strategies’ switching time,tS = {350,500,
650,800}, and keeping the total number of the generations



A Hybrid Selection Strategy Using Scalarization and Adaptiveε-Ranking for Many-objective Optimization 77

fixed toT = 1000. In the following, for the sake of clar-

ity we only present results fortS = {350,800}. All algo-

rithms are set with parent and offspring population of size

100, Simulated Binary Crossover (SBX) for recombina-

tion with ratepc = 1 per individual, and polynomial mu-

tation (PM) with rate1/n per decision variable. Initial set-

tings forAεRE are the same used for MNK-Landscapes,

as indicated in Section 5·1. The reference point to calcu-

late the hypervolume is set to(1.01×max(f1), · · · ,1.01×
max(fM )), computingmax(fm), m = 1, · · · ,M , from

the solutions generated in all runs by the algorithms. Note

that DTLZ functions are minimization problems.

Firstly, we analyze results for function DTLZ2, which

has a non-convex Pareto-optimal surface that lies inside

the first quadrant of the unit hyper-sphere.Figure 10(a)
and(b) show the normalized hypervolumeH and set cov-

erage measureC, respectively. Looking atAεRE and NSGA-

II, from these figures note that forM = 6 objectives or

lessAεRE is worse than NSGA-II onH, but similar on

C, C(N,AE) = 0 andC(AE ,N) = 0. On the other hand,

AεRE is significantly better than NSGA-II for more than6
objectives, both onH andC, C(N,AE) = 0 andC(AE ,N)
> 0.45. These results suggest that NSGA-II achieves bet-

ter spread that improves hypervolume forM ≤ 6, but it

cannot find solutions that dominateAεRE ’s solutions. In-

creasingM above6, AεRE achieves better spread and

convergence than NSGA-II. Next, we look at results by

the hybrid strategyµFAεRE . From the sameFigure 10,

note thatµFAεRE improvesH compared toAεRE for

M < 6, and also improvesC for all values ofM . These

results show that the inclusion of the simple scalariza-

tion strategyµF helps convergence of the algorithm. It is

also worth mentioning that the switching timetS used in

µFAεRE leads to slightly differentC values forM > 6,

but those differences are not captured byH. This is be-

cause the reference point used to calculateH is located

relatively far away from the Pareto front ofµFAεRE , in

which case differences in convergence are difficult to de-

tect with theH measure.

Secondly, we analyze results for DTLZ3, a variation of

DTLZ2 that introduces a large number of local Pareto-

optimal fronts in order to test the convergence ability of

the algorithm. Results for DTLZ3 are shown inFigure 11(a)
and(b). From these figures note that the inclusion of the

scalarization functionµF improvesH andC for all val-

ues ofM . These results suggest that on non-convex con-

tinuous problems of increased convergence-di-fficulty, the

introduction of the scalarization strategyµF in the hybrid

approach works effectively to improve the performance of

the algorithm. Similar to DTLZ2, the effects of the switch-

ing time tS can be observed onC but not onH. Notice

that better values ofC are observed for the early switch-

ing time. This is becauseµF focuses in an increasingly

narrower area of objective space for largertS .

Thirdly, we analyze results for DTLZ4, a problem with

a biased density of solutions to some of the objective space

planes, in order to test the ability of the algorithms to

maintain a good distribution of solutions. Results are shown

in Figure 12(a)and(b). Note thatAεRE performs better

than NSGA-II. However, the introduction of the scalar-

ization functionµF that focuses on convergence-only de-

teriorates performance of the hybrid approachµFAεRE ,

compared toAεRE . These results suggest that on prob-

lems with highly biased distribution of solutions simple

strategies that favor convergence without paying attention

to diversity could mislead the algorithm.

9. Conclusions

We have shown that a two-stage hybrid strategy that

uses scalarization and Pareto dominance enhanced with

Adaptiveε-Ranking can significantly improve performance

on many-objective MNK-Landscapes, especially for a large

number of objectives. Also, we showed that it is feasible

to simplify the scalarization strategy, which could reduce

overall computational cost. In addition, we compared the

hybrid strategy with Subvector Dominance Assignment

and Epsilon Dominance Assignment, two highly effec-

tive methods to improve convergence on many-objective

problems, showing that the hybrid approach can find so-

lutions with similar or better convergence properties on

highly complex MNK-Landscapes, while achieving bet-

ter spread and distribution. We also showed that the pro-

posed hybrid strategy can significantly improve perfor-

mance on many-objective continuous functions with non-

convex Pareto fronts, especially on problems having a large

number of local fronts that increase the difficulty to con-

verge. However, the simple scalarization function can be

misleading on problems with large bias on distribution of

solutions, in which case Adaptiveε-Ranking alone is su-

perior. In the future, we would like to look into adaptive

strategies to switch between stages avoiding the negative

effects of large biases on distribution of solutions, and try

other scenarios to deploy the individual strategies.
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Improved Dimension-sweep Algorithm for the Hypervolume Indica-
tor”, Proc. 2006 IEEE Congress on Evolutionary Computation, IEEE
Service Center, pp.1157-1163 (2006)

[Hughes 05] Hughes, E. J.: “Evolutionary Many-Objective Optimiza-
tion: Many Once or One Many?”,Proc. 2005 IEEE Congress on
Evolutionary Computation, IEEE Service Center, Vol.1, pp.222-227
(2005)

[Ishibuchi 98] Ishibuchi, H., Murata,T.: “A Multi-Objective Genetic
Local Search Algorithm and Its Applications to Flowshop Schedul-
ing”, IEEE Trans. on Systems, Man, and Cybernetics - Part C: Appli-
cations and Reviews, vol. 28, pp. 392-403 (1998)

[Ishibuchi 07a] Ishibuchi, H., Tsukamoto, N., and Nojima, Y.: “It-
erative Approach to Indicator-based Multiobjective Optimization”,
Proc. 2007 IEEE Congress on Evolutionary Computation, pp. 3697-
3704 (2007)

[Ishibuchi 07b] Ishibuchi, H., and Nojima, Y.: “Optimization of
Scalarizing Functions Through Evolutionary Multiobjective Opti-
mization”, Proc. Fourth Intl. Conf. on Evolutionary Multi-Criterion
Optimization, Springer, LNCS, vol. 4403, pp. 51-65 (2007)

[Ishibuchi 08] Ishibuchi, H., Tsukamoto, N., and Nojima, Y.: “Evo-
lutionary Many-Objective Optimization: A Short Review”,Proc.
IEEE Congress on Evolutionary Computation, IEEE Service Center,
pp.2424-2431 (2008)

[Jaskiewics 02] Jaskiewics, A.: “Genetic Local Search for Multi-
Objective Combinatorial Optimization”,European Journal of Oper-
ational Research, vol. 137, pp.50-71 (2002)

[Kauffman 93] Kauffman, S. A.: The Origins of Order: Self-
Organization and Selection in Evolution, Oxford University Press
(1993)

[Koppen 07] Koppen, M., and Yoshida, K.: “Substitute Distance As-
signments in NSGA-II for Handling Many-Objective Optimization
Problems”,Proc. 4th Intl. Conf. on Evolutionary Multi-Criterion Op-
timization, Springer, LNCS, vol.4403, pp,727-741 (2007)

[Kukkonen 07] Kukkonen, S., and Lampinen, J.: “Ranking-
dominance and Many Objective Optimization”,Proc. 2007 IEEE
Congress on Evolutionary Computation, pp. 3983-3990 (2007)
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