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Summary

In this paper, a new Genetic Network Programming with Automatic Program Generation (GNP-APG) has
been proposed and applied to the Tileworld problem. A kind of genotype-phenotype mapping process is introduced
in GNP-APG to create programs. The procedure of the program generation based on evolution is demonstrated in this
paper. The advantages of the proposed method are also described. Simulations use different Tileworlds between the
training phase and testing phase for performance evaluations and the results shows that GNP-APG could have better
performances than the conventional GNP method.

1. Introduction

Derived from Genetic Algorithm [Holland 75, Goldberg

89] and Genetic Programming (GP) [Koza 92, Koza 94,

Koza 99], Genetic Network Programming (GNP) [Mabu

07, Eguchi 06] has been proposed as an evolutionary algo-

rithm to efficiently solve the complex problems. GNP uses

directed-graph structures as its gene structure. Based on

the higher expression ability of graph structures, GNP has

inherent features such as reusability of nodes and build-

ing block functions, which avoid the bloating problem and

improves the performances of the algorithms [Mabu 07].

Up to now, GNP has been successfully applied to many

fields such as elevator supervisory control systems [Hira-

sawa 08], stock market prediction [Chen 09], association

rule mining [Shimada 06], and traffic prediction[Zhou 10].

On the other hand, automatic program generation, in

other words, automatic programming or program induc-

tion is a way to obtain a program without explicitly pro-

gramming it. Several evolutionary algorithms like GP,

Gene Expression Programming (GEP) [Ferreira 01, Fer-

reira 02] and Grammatical Evolution (GE) [O’Neill 01,

O’Neill 03] have been proposed with much success for

this research field. In these methods, GP is the most well-

known and widely used one. For example, in symbolic

regression problems, GP builds up a function close to the

target function by combining math operators called func-

tion set (‘+’, ‘-’, ‘sin’, ‘cos’...) and variables or constants

called terminal set (‘1’, ‘x’, ‘y’, ‘z’...)[Koza 92]; actu-

ally, in an artificial ant application, GP creates a program

through function set (‘if Food Ahead’, ‘prog2’, ...) and

terminal set (‘move To Nest’, ‘pick Up Food’, ...) to teach

the artificial ants for searching the food and taking it to

their nest [Koza 92].

Nowadays, some studies on GNP for automatic program

generation (GNP-APG) has been conducted, and the sim-

ulation result shows good performances of it [Mabu 05,

Mabu 09]. But, in these papers, only static problems are

used to verify the performance of GNP-APG. So, the ob-

jective of this paper is to improve GNP-APG to deal with

the time dependent environment problems like Tileworld

and prove the proposed method works better than the con-

ventional GNP. In addition, Tileworld is a famous test bed

for agents with time dependent and uncertain character-

istics, since the environment always changes and agents

cannot get all information of the environment [Pollack 90].

The improved GNP-APG introduces a kind of genotype-

phenotype mapping process to create programs [Banzhaf

94]. In GNP-APG, the genotype is the structure of GNP

and the phenotype is programs. Through the transition

from nodes to nodes (genotype), the programs (pheno-

type) are generated and stored in the outside memory. As
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noted in [O’Neill 01] and [Banzhaf 94], a mapping process

can separate the search space and solution space, which

makes the search of the genotype unlimited, while still

keeping the legality of the program. With the mapping

process, genetic operations are not performed on the pro-

grams, but on GNP structure which works as a program

generator. This is a key point on how the proposed method

is different from GP.

Though GNP-APG extends from the conventional GNP,

but there are many differences between them.

• An individual of GNP-APG is a solution generator,

and it is only used for the mapping process to cre-

ate the solutions for the problem. After evolution, a

better solution generator can be obtained. But, the in-

dividual of the conventional GNP is a solution for the

problem.

• GNP-APG only communicates with the outside mem-

ory, where its individuals get primary elements or sub-

programs from the memory and put subprograms to

the memory. While the conventional GNP individu-

als directly probe the information from environments,

then use this information to make a decision and tell

agents what to do.

• GNP-APG has the outside memory for the generated

programs, which can save more information explic-

itly. While the conventional GNP keeps the informa-

tion in the network flow implicitly.

This paper is organized as follows. Next section pro-

vides the brief concept of GNP. In section 3, the proposed

method of improved GNP-APG is described deeply. Sec-

tion 4 shows the simulation environments and the perfor-

mances of the conventional GNP and GNP-APG. Section

5 is devoted to conclusions.

2. The Conventional GNP

In this section, the conventional GNP (GNP for short) is

reviewed briefly.

2·1 Basic structure of GNP

As mentioned before, GNP has a directed-graph struc-

ture which is different from strings in GA and trees in

GP. The basic structure of GNP is shown in Figure 1.

The structure of GNP consists of three kinds of primary

nodes: start node, judgment node and processing node.

These nodes are connected by directed links shown with

arrows. The square stands for the start node which iden-

tifies the first node to perform. The hexagon represents

the judgment nodes. The judgment nodes have several

branches connected to the other judgment nodes or pro-
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Fig. 2 Representation of GNP structure

cessing nodes. When the judgment node is executed, it

probes the information from environments, then analyzes

the current situation, and finally decides the next node

to move depending on the result of judgments. The cir-

cle describes the processing node. Processing nodes only

have one branch linked to the other node except the start

node. Each processing node will make an agent take an

action when the processing node is visited. After the ac-

tion, the environment is changed. In practice, the number

of branches of judgment nodes, the functions of judgment

nodes and processing nodes are determined by designers

according to the problem.

Figure 2 shows the representation of GNP structure. An

integer array is used to describe the gene of a node. The

gene contains two part: node gene and connection gene.

The node gene stores three kinds of data, which areNTi,

IDi, anddi. NTi represents the type of nodei. The three

options 0, 1, and 2 means the start node, judgment node

and processing node, respectively.IDi means the identity

of nodei which shows the index of functions.di is used to

describe the time delay for judgment and processing. The

connection gene keeps the connection information from

nodei, whereCi1,Ci2... represent the index of the con-

nected nodes anddi1,di2... show the time delay for the

transition of these connections.
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2·2 Genetic operators of GNP

Like other evolutionary algorithms, GNP also introduces

selection, crossover and mutation to evolve the GNP indi-

viduals.

GNP provides elite selection and tournament selection.

Elite selection is simple, it picks up the best individual and

move it to the next generation directly. Tournament se-

lection chooses several individuals from the current pop-

ulation randomly, then runs several “tournaments”. The

winners of the individuals are selected for crossover and

mutation.

Crossover is performed between two parents and gener-

ates two offspring. Two parents are selected through tour-

nament selection. During crossover, the corresponding

nodes have the probability ofPc to swap each other. After

crossover, two new individuals are produced and moved to

the next generation.

Mutation just needs one individual. All data in the gene

exceptNTi have the mutation rate ofPm to change ran-

domly. After mutation, a new individual is created. There

are two kinds of mutations in GNP: connection mutation

and function mutation. Connection mutation changes the

connections between nodes, in concrete, the values ofCi1,

Ci2... are altered. Function mutation means the function

of the individual is changed, which implies the value of

IDi is updated.

3. GNP-APG

In this section, the concepts of the improved GNP-APG

for agent control are described in detail.

3·1 Basic structure of GNP-APG

It has been mentioned in section 1 that GNP-APG has

the outside memory and exchanges the information with

it, which makes the basic structure of GNP-APG a little

different from GNP. Figure 3 shows the basic structure of

GNP-APG. Compared with Figure 1, the outside memory

is added. In Figure 3, although there are onlynode 8and

node 9pointing to the memory, in fact, all the processing

nodes can read from the memory like white arrows and

write to the memory like black arrows. These other ar-

rows are just omitted in order to keep the figure clear. The

memory structure is different from previous GNP-APG. It

consists of two parts. One is read only and shared by all

individuals, which contains the basic actions of agents de-

pending on the problem. In other words, the basic action

set consists of two sets which are called as terminal set

and function set like GP. The other is named subprogram

pool which can be read and written. Each individual has

its own subprogram pool used to store subprograms when

the procedure of the program generation is carrying out.

In the individual evaluation procedure, each subprogram

in the pool is picked up as one program. Then, the pro-

grams are evaluated in order to calculate the fitness of the

individual.
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Fig. 3 Basic structure of GNP-APG

In addition, there are also three kinds of nodes in GNP-

APG, but the roles of judgment nodes and processing nodes

are not the same as GNP. In GNP-APG, the role of judg-

ment nodes is to select the next node in turn. For ex-

ample, suppose a judgment node has two branches, and

when the judgment node is visited for the first time, it se-

lects the node connected from the first branch, and selects

the second branch for the second visit, then return to the

first branch for the third visit, and so on. By this way,

all branches of the judgment node can be selected, which

make the sufficient search of the graph structure. In one

individual, there are several kinds of judgment nodes, such

as 2-branches, 3-branches and 4-branches in order to con-

nect them to enough processing nodes and give different

probabilities by which the next nodes are selected. The

role of processing nodes is to create programs. A pro-

cessing node gets the basic actions or subprograms from

the memory, then combines them following some mapping

rules to create a more complex subprogram and puts it to

the subprogram pool.

Figure 4 shows the representation of GNP-APG. The

chromosome of GNP-APG has two more segments com-

pared to GNP. One segment containsRi1...Rip which means

the addresses of the reading memory of nodei. If p = 4,

the node reads four basic actions or subprograms from the

memory. For example,node 2is this kind of processing

node in the figure. The other segment containsWi1...Wiq

which means the addresses of the writing memory of node

i. Usually, the subprogram only needs to be stored once,

soq always equals to 1. In the figure, the write address of
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3·2 Procedure of program generation

Usually, a program consists of sequential, conditional

and loop statements. Since the created program will repeat

several times in the proposed method as a kind of loop,

so only sequential and conditional statements are neces-

sary. In the proposed method, two key words “SUB2” and

“IF” are used to represent sequential and conditional state-

ments, respectively. The procedure of the program genera-

tion of the proposed method is also different from previous

GNP-APG.
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Fig. 5 Small but complete example of GNP-APG

Table 1 Functions of Processing Nodes

ID Name Function
0 SUB2 Create sequential statement
1 IF Create conditional statement

Figure 5 is a small but complete example of GNP-APG.

The number on the arrows means the index of branches.

Table 1 shows the function of processing nodes, Table 2

describes the function of judgment nodes and Table 3 rep-

resents the argument number of actions. The detail of each

Table 2 Functions of Judgment Nodes

ID Function
2 2-branches
3 3-branches

node is shown in the figure. For example,NT2 andID2

of node 2are 2 and 0, respectively, so node 2 is a pro-

cessing node which is used to create sequential statement.

It connects tonode 3according to the connection gene.

Moreover, it reads from location 2 and 1 of the memory,

then write to location 5 of the memory depending on the

read addresses and write address, respectively.

Table 3 Argument numbers of actions

Action Argument number
a1 0
a2 0
a3 0
a4 3

Table 4 Pseudocode ofsp2

Supposea4 has three judgment resultsv1, v2 andv3
Let re be the return value ofa4

if re == v1:
a2;
a1;

else ifre == v2:
a2;

else ifre == v3:
a3

Beginning from the start node,node 1is the first node

to execute.Node 1is a judgment node, and its first branch

connects tonode 2, so the next node to visit isnode 2.

As the node type ofnode 2is 2 and its identity is 0, it

is a processing node and the key word is “SUB2”. The

key word “SUB2” is used to create the sequential state-

ment. Suppose there are two actions “action1” and “ac-

tion2” obtained from the memory, and the rule to create

the statement is “SUB2(action1, action2)” which means

that the agent take “action2” followed by “action1”. The

read addresses ofnode 2are 2 and 1, so actionsa2 and

a1 are picked up. According to the rule, a subprogram

“SUB2(a2, a1)” is generated. After that, the subprogram

is written to location 5 of the memory, andsp1 changes

to “SUB2(a2, a1)”, since the write address ofnode 2is

5. Then, the next node becomesnode 3. Like the same

asnode 1, node 3is a judgment node, and it selects the

branch depending on the times of the visits. This is the

first time for node 3to visit, so it choosesnode 1as the

next node to visit. At this time,node 1determinesnode 4

to execute because this is the second visit tonode 1. Node
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4 is a processing node and used to create conditional state-

ments. The key word of the conditional statement is “IF”,

and the rule is “IF(action1, action2, action3, ...)”. In this

statement, “action1” should be a judgment action which

is like a function in the function set of GP. The argument

number of “action1” determines the number of the other

actions. In this case,node 4getsa4 as a judgment action.

From Table 3,a4 needs three arguments, sosp1, a2 and

a3 are picked up depending on the read addresses of 5,

2, and 3, respectively. Then, a subprogram “IF(a4, sp1,

a2, a3)” is created and stored at location 6 of the mem-

ory, because the write address ofnode 4 is 6. By this

way, sp2 changes to “IF(a4, sp1, a2, a3)”. For sp1 has

become “SUB2(a2, a1)”, the entire representation ofsp2
is “IF(a4, SUB2(a2, a1), a2, a3)”. It can be seen as a

program including sequential and conditional statements.

The pseudocode ofsp2 is shown in Table 4. GNP-APG

repeats this kind of procedure until the predefined number

of transitions is reached. After finishing the procedure, the

subprograms of the subprogram pool are picked up as the

programs to solve the problem.

3·3 Flow chart of GNP-APG
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Fig. 6 Flowchart of GNP-APG

Figure 6 shows the flowchart of GNP-APG.

1) Parameters are set. Hundreds of GNP-APG individuals

are generated randomly.

2) Each individual of the population creates programs by per-

forming the above procedure.

3) Each individual evaluates the programs in its own subpro-

gram pool. The best evaluation value among these pro-

grams becomes the fitness value of the individual.

4) The individual which has the highest fitness value is copied

to the next generation directly.

5) Two individuals are selected by tournament selection as

parents. These individuals exchange their nodes by the

crossover rate. After the crossover, not only the connec-

tions are exchanged, but also the addresses of reading mem-

ory and writing memory are exchanged. So two new indi-

viduals are generated and moved to the next generation.

6) One individual is selected by tournament selection as a

parent. The individual randomly changes its gene accord-

ing to the mutation rate, i.e., the connections, the addresses

of the reading memory and the writing memory randomly

change their values. After mutation, one new individual is

generated and moved to the next generation.

7) Determine whether it is the last generation. If the answer

is yes, then the algorithm ends, otherwise, go to step 2.

3·4 Advantages of GNP-APG

GNP-APG uses genotype-phenotype mapping to create

programs, which enables the genotype search without lim-

itation, while still keeping the legality of the program. The

following shows an example of program generated by the

proposed method.
[’SUB2’, [’JF’, [’JL’, [’SUB2’, [’HD’, [’TL’], [’JF’, [’TR’], [’JL’, [’TR’], [’TL’], [’TL’]], [’ST’]], [’TD’, [’JR’,

[’THD’, [’JB’, [’TL’], [’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TR’]], [’TL’], [’ST’], [’TR’], [’ST’]], [’ST’],
[’TR’]], [’TL’], [’MF’], [’JL’, [’JB’, [’TL’], [’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TR’]], [’TL’], [’TR’]],
[’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]]], [’ST’], [’TR’]], [’JL’, [’TR’], [’TL’], [’TL’]]], [’TL’], [’TR’]],
[’SUB2’, [’JF’, [’JL’, [’JB’, [’TL’], [’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TR’]], [’TL’], [’TR’]], [’HD’,
[’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TL’]], [’MF’]], [’TL’]], [’MF’]]

GNP-APG has other important advantages. These ad-

vantages rely on the structure of the algorithm.

• More solution candidates. Since the individual of GNP-

APG is a program generator, it can create several can-

didate programs stored in the memory. These pro-

grams are selected as solution candidates and eval-

uated. Then, the best one is picked up as the solu-

tion. So, GNP-APG can increase the probability to

find better solutions.

• Sufficient use of the graph structure. As noted in

[Eto 07], the conventional GNP cannot use the whole

graph structure, because the judgment nodes usually

select only several specific branches. But, GNP-APG

selects the branches in turn, as a result, each branch

has the same chance to select. By this way, GNP-

APG can make full use of the graph structure.

• Keeping the diversity of the genotype. Figure 7 shows

two different GNP-APG individuals. The memory

is omitted. During program generation, the transi-

tion sequence of the left individual isnode 1⇒node

2⇒node 3⇒node 1⇒node 4⇒node 3⇒ node 2, while

the sequence of the right individual isnode 1⇒node

3⇒node 2⇒node 3⇒node 4⇒node 1⇒node 2. Th-

ough the entire sequences between two individuals



48 進化計算学会論文誌 Vol. 1 No. 1（2010）

are different, the sequences of processing nodes like

node 2⇒node 4⇒node 2are the same. As long as the

read addresses and write address of both individuals

are the same, the two different individual can create

the same program. Since the fitness value of individ-

uals comes from the evaluation value of the program,

the individuals have the same fitness value. Then,

when the selection occurs, both individuals have the

same probability to be selected as a parent. In this

way, GNP-APG keeps the diversity of the genotype.

• Building the building blocks and subroutines. When

the procedure of the program generation is carried on,

the subprograms stored in the memory might be used

many times. These subprograms work as building

blocks and subroutines.
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Fig. 7 Two different GNP-APG individuals with different connections

4. Simulations

In this section, the performances of the proposed method

are evaluated and compared with the conventional GNP

using Tileworld. In paper [Mabu 07], the performance of

the conventional GNP has been compared with GP, GP-

ADFs and EP, and proved better than the others. So, GNP

is a reasonable method for solving the Tileworld problem.

4·1 Simulation environments

Tileworld is a famous agent-based test bed with time

dependent and uncertain features, since the environment

always changes and agents cannot get all the information

of the environment [Pollack 90]. Tileworld consists of

agents, floor, tiles, holes and obstacles. The agents need

to move round the obstacles and to push all the tiles into

the holes as soon as possible. Once a tile is pushed into a

hole, the hole becomes the floor. A agent can only push

one tile at a time.

In the training phase, 10 different Tileworlds are used

to train the agents’ behavior. Each world has 3 agents,

3 holes and 3 tiles. The position of obstacles, holes and

agents are the same. However, the position of tiles are

different from each other. Figure 8 shows the training en-

vironments.

Two kinds of changes are introduced in the testing phase.

The first kind is to change the location of holes. The upper

part of Figure 9 shows this kind of change. The difference

is the position of the holes. The holes are moved a lit-

tle farther away from the tiles compared with the training

phase. The other kind is to change the location of agents

which are shown in the lower part of Figure 9. The differ-

ence is the position of the agents. The agents are moved

to the corner of the environments. These kinds of changes

are applied to the training environments, so there are 10×2

testing environments.
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4·2 Simulation configuration

Table 5 Basic Action Set
Symbol Action Argument

JF Judge Forward 5
JB Judge Backward 5
JL Judge Left 5
JR Judge Right 5
JT Judge the nearest Tile 5
JH Judge the nearest Hole 5

JHT Judge the nearest Hole from the nearest Tile 5
JST Judge the second nearest Tile 5
MF Move Forward 0
TR Turn Right 0
TL Turn Left 0
ST Stay 0

The basic action set of GNP-APG is described in Ta-

ble 5, the functions of processing nodes is the same as
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Table 6 Functions of Judgment Nodes in Simulations

ID Function
4 4-branches
6 6-branches
8 8-branches

Table 1 and the functions of judgment nodes are shown in

Table 6. JF, JB, JL and JR return the floor, obstacle, tile,

hole or agent; JT, JH, JHT and JST return the forward,

backward, left, right or nothing. MF, TR, TL and ST do

not have the return value. While JF, JB, JL, JR, JT, JH,

JHT and JST are 8 kinds of judgment actions, while MF,

TR, TL and ST are 4 kinds of processing actions in GNP.

Each individual of GNP-APG contains 60 nodes includ-

ing 15 judgment nodes (5 for each kind) and 45 processing

nodes (5 for “SUB2” processing node, 40 for “IF” pro-

cessing node). Each individual of GNP has also 60 nodes

(5 for each kind of nodes).

The parameters used in simulations is described in Ta-

ble 7. The population size is 301, and during the evolution

procedure, the best individual is copied to the next pop-

ulation. 180 individuals are generated through crossover,

while 120 individuals are created through mutation. The

crossover rate is 0.2 and mutation rate is 0.03. The pro-

gram needs to iterate 500 generations. During the program

generation, the maximum number of transitions is 60, and

maximum length of programs is 6000 bytes in GNP-APG.

The number of subprograms is 12.

Table 7 Parameters of simulations

Parameter Name GNP-APG GNP
Number of Individuals 301 301

Number of Elites 1 1
Crossover Size 120 120

Crossover RatePc 0.2 0.2
Mutation Size 180 180

Mutation RatePm 0.03 0.03
Number of Generations 500 500
Number of transitions 60

Maximum length of program 6000 bytes
Number of subprograms 12

The fitness function of each Tileworld is defined by Eq.(1).

Fitness = Ctile ×DroppedT ile

+Cdist ×
∑

t∈T
(InitDi(t)−FinDi(t))

+Cstp × (TotalStep−UsedStep)

(1)

where,DroppedT ile is the number of tiles the agents

have pushed into the holes.InitDi(t) is the initial dis-

tance betweentth tile and the nearest hole, whileFinDi(t)

represents the final distance betweentth tile and the near-

est hole. T is the set of suffixes of tiles.TotalStep is

a predefined maximal number of actions all the agents

can take, andUsedStep represents the number of actions

which the agents have taken.Ctile, Cdist andCstp are re-

wards when an agent drops the tile into the hole, moves the

tile near to the hole and takes less steps than the total steps

when finishing the job. In the simulations,Ctile, Cdist,

Cstp andTotalStep are set at 100, 20, 1 and 180 (60 num-

bers of actions for each agent), respectively. In the simula-

tions, the average of the fitness values over ten Tileworlds

is calculated to show the performances of GNP-APG and

GNP.

4·3 Simulation results

Figure 10 shows the average fitness value of the best

training results of GNP-APG and the conventional GNP

over 50 random seeds. In the 500th generation, the aver-

age of the best fitness values of GNP-APG and GNP are

319.71 and 297.30, respectively. At first, the fitness val-

ues of GNP-APG and the conventional GNP increase at

the same speed. Then, after 50 generations, the evolv-

ing speed of both methods decrease. But, the evolving

speed of GNP-APG is higher than the conventional GNP,

since GNP-APG can use of the graph structure fully and

keep the diversity of the genotype. At last, GNP-APG can

gain a larger fitness value than the conventional GNP ob-

viously.

Figure 11 shows the average length of the best programs

of GNP-APG in the training phase. As noted in [Lang-

don 97], the growth of the length of the program is in-

herent in the proposed methods, since the length of the

program is not fixed but varying. Figure 11 confirms this

tendency, i.e., the average length over the best programs

grows from 1954.1 to 4001.1. But, the length does not

always increase, instead, it is fluctuated during the evo-

lution. It is found from Figure 11 that the growth of the

length is far below the maximal allowable value in the last

generation. From this point of view, the proposed method

does not suffer from the bloating problem.

Figure 12 and Figure 13 show the average fitness value

of each Tileworld of GNP-APG and the conventional GNP

in the test cases, where the best 50 individuals from the

training phase are used to test these new environments.

When changing the location of holes, the average fitness

values are 58.2 in GNP-APG and 25.2 in the conventional

GNP, respectively. It can be seen from Figure 12 that

GNP-APG performed a little worse than the conventional

GNP only in world 1. While GNP-APG is much better

than the conventional GNP in world 9 and 10. When

changing the location of agents, the average fitness val-

ues are 170.7 in GNP-APG and 84.1 in the conventional

GNP, respectively. It is also found from Figure 13 that
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GNP-APG can get more rewards in each world, especially

in world 2, 6, 7 and 10, where the fitness values are twice

than the conventional GNP. So, the proposed method has

more generalization ability than the conventional GNP to

deal with time dependent environment problems, which

means the robustness of the proposed method is better than

the conventional GNP.
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In addition, another set of Tileworld with different ob-

stacle configurations are used to verify the performance

on GNP-APG and the conventional GNP. The ten differ-

ent types of obstacles are shown in Figure 14. In each

type, there are ten worlds with different configurations on

holes or tiles. So, there are totally 100 worlds. Figure 15

shows the average of the best fitness values over 10 ran-

dom seeds and 100 worlds. It is found from Figure 15

that GNP-APG can also have better performance than the

conventional GNP in many kinds of worlds.
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4·4 Simulation Analysis

From the training results, GNP-APG could get higher

fitness values than the conventional GNP. Because the in-

dividual of GNP-APG is a program generator, it can cre-

ate several candidate programs stored in the memory, and

evaluate them to pick up the best one, which increases the

probability to find better solutions. Besides, GNP-APG

can sufficiently use the graph structure since the branches

of judgment nodes in GNP-APG have the same probabil-

ity to select, which also helps to improve the performance

of the proposed method. Table 8 shows the mean, stan-

dard deviation and p-value of the training fitness results.

The p-value of t-test of the mean fitness values is much

smaller than 0.05 which means the means of two groups

are statistically different from each other. The conclusions

derived from the above results are convincing.

Table 8 Statistical fitness values of training phase

GNP-APG the conventional GNP
Mean 3197.12 2973.04

Standard deviation 385.65 402.36
p-valve (t-test) 5.89E-06

Moreover, it is found from the testing results that GNP-

APG is much better than the conventional GNP. Because

there are 8 kinds of judgment nodes and 4 kinds of pro-

cessing nodes in the conventional GNP, the proportion of

judgment nodes and processing nodes is 2:1, which means

the average number of judgment nodes needed for pro-

cessing is 2. In other words, the agent will judge two kinds

of situations, then take an action. But, many kinds of Tile-

worlds are to be dealt with in many cases, so two judg-

ments are not enough. While there are 40 “IF” processing

nodes in GNP-APG, then the program generated by GNP-

APG will contain many judgments. So, GNP-APG works

better than the conventional GNP in the testing phase. Ta-

ble 9 and Table 10 describe the statistical values of the

fitness in the testing phase, where the location of the holes

and agents are changed, respectively. In each testing case,

the p-value of t-test of the mean fitness values is much

smaller than 0.05, which implies two groups are signifi-

cantly different.

Table 9 Statistical fitness values of testing phase when the location of
holes is changed

GNP-APG the conventional GNP
Mean 582.00 251.60

Standard deviation 421.12 289.37
p-valve (t-test) 0.0064

Table 10 Statistic fitness values of testing phase when the location of
agents is changed

GNP-APG the conventional GNP
Mean 1707.18 841.22

Standard deviation 609.17 497.97
p-valve (t-test) 0.0008

4·5 Parameters Discussion

GNP-APG has more parameters than GNP, i.e., the num-

ber of transitions, maximum length of program and the

number of the subprograms. These parameters influence

the length and the fitness value of the program. Simula-

tions on Figure 8 are used to study the effect of different

parameters.
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Fig. 16 Fitness value of programs with different number of transitions
and different maximum length of programs

The number of transitions and the maximum length of

the program are used to work together to control the size

of the program. If the number of transitions and the max-

imum length of the program are small, the length of pro-

gram is small, and GNP-APG cannot generate a compli-

cate program to deal with complicated environments, so

the fitness becomes low; otherwise, if they are large, the
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search space increases rapidly, then it is also very hard

to find a good solution, so the fitness value becomes also

low. Figure 16 and Figure 17 show the average fitness

values and lengths of programs by different parameter set-

tings over 10 random seeds.T andL mean the number

of transitions and the maximum length of programs, re-

spectively. It is found from Figure 16 and Figure 17 that

whenT equals 60 andL equals 6000, the algorithm can

get the highest fitness value and proper size of the pro-

grams, which confirms the previous description.
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The number of subprograms is an important parameter

for the fitness values and the length of the programs. If the

number of subprograms is small, the old subprograms are

mostly replaced by the new one, and some useful subpro-

grams may be lost, so the fitness becomes low, besides

the processing nodes always read the subprogram from

the same memory, as a result, the length of the program

will increase quickly. On the other hand, if the number of

subprograms is large, some subprograms may not be se-
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Fig. 19 Length of programs with different number of subprograms

lected to generate statements, by which the fitness values

are also affected. But, as the processing nodes read differ-

ent subprograms from different memories, the growth rate

of the length of the program will decrease. Figure 18 and

Figure 19 describe the average fitness values and lengths

of programs by different number of subprograms over 10

random seeds.N means the number of subprograms. It

is found from Figure 18 that whenN equals 12, the al-

gorithms can get the highest performance compared with

other settings. Figure 19 confirms the tendency described

before, i.e., whenN is small, the length becomes large,

while whenN is large, the length becomes small.

5. Conclusion

In this paper, automatic program generation with Ge-

netic Network Programming has been proposed and ap-

plied to the Tileworld problem for agent control. The pro-

posed method introduces two functions ”IF” and ”SUB2”

to create conditional statements and sequential statements

which are two basic statements in a program. The pro-

posed method introduces a genotype-phenotype mapping

technology to generate legal programs. Through the tran-

sition of nodes, it does not only create simple statements,

but also create some complex programs to deal with the

problem. Since the proposed method has advantages of

using graph structures fully, keeping the diversity of the

genotype and using the building blocks and subroutines, it

can find better solutions than the conventional GNP. The

simulations confirms that the proposed method is more ro-

bust than the conventional GNP. It is also found that al-

though the proposed method improves the robustness, the

fitness value of the testing phase is still much lower than

the training phase, which means the proposed method still

suffers from the overfitting problem.

In the future, we will introduce subroutines into GNP-
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APG to improve the performances of the proposed method

and find a way to solve the overfitting problem.
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