


PURPOSE

Basic GA, as the first learning experience
of actually building the program based on a real
problem, also of processing the data
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| FIRST GENERATION

Randomized generation for the seed, between [0, 1]
as a standardized value of each variables

0.114849 0.808894 0.677372 0.28848 0.056884




PARENT SELECTION

Tournament Method s1 | f1q
o Random
Randomly selected 2 individual Sz | f12 Pyir
-> Individual with lower objective | °3 f13 Si | f1i | Parent Candidate
value are chosen Sa | f14
vs— | P1  f11
-> repeated enough timesto geta | "= | "
) X 50

full population Ssg | f148 Sj | Ja,

Sao | f1,49

Sso | f1,50




CROSSOVER

Simulated Binary Crossover
— SBX (Deb and Goyal,
1996)

O Symmetric -> Avoid any bias
towards particular parent

Probability Distribution

O When parents values are
distant, distant children values
possible
When parents values are close,
distant children values unlikely
- Converging Search




CROSSOVER

Following the equation of: Parameter
f 1 n =15
| euwm,  ifu<os
p = L
1 n+1 :
\(2(1—u)) , otherwise. Steps:

Randomize u

Children \v f Pcren’rS\+ G ~
i o _ - et
xl.(l’”l) =0.5 (1 + ,3) xi(l’t) + (1 — ,8) xi(z’t) ,

_ _ _ - Calculate children value
xHD = o5 (1 — ,8) x4 (1 + ,3) x 9,

l




MUTATION

The Mutated Value is calculated following the
probability function defined by Deb and Goyal

(1996) that depends on the perturbance factor 0:

P(8) = 0.5(n+ 1)(1— |5

In accordance to the following equation,

1
5 (2u)n+1 — 1, if u<o0.>5
— 1
1—-[2(1 —w)]n+r, if u=>0.5.

c=p+ 60,4

Parameters:

1
Pm =55 Agx=1 n=15

||||||||||||||||||||||

-1 0 1

Performance factor

Steps:

» Randomize v

>Get §

» Calculate Mutated Value ¢



Penalty points to objective value
-> Harder to be selected

ff=f+ a x Q(x)

CONSTRAINT

HANDLING 00 =Tz, wi

W__{ 0, g;(x)>0
gl gi(x) <0

Parameter: @ = 1




OBTAINED RESULT

From the solution that satisfied all the
constraint conditions,

The best solution is of f = 0.062543495
Found on Generation 99
11
/21
The median solution is of
Only from satisfying trials: f = 0.069217208
From all 21 Trials: f =0.078854218

Satisfied Individual’s f in the Best Trial



CONCLUSION

This project helped me build my foundation:
GA and Techincal Programming Skills

Further study:
Try making adjustment and research the effects

|deas: Change the n from small to big along the loop so that the search can
be even more converging

Try the multi-objective techniques
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IDEA with Bump Hunting Mipisicy

Constrained single objective wind turbine design optimization problem.

o Population based stochastic optimization algorithms are preferred since the objective and constraint functions may be highly
nonlinear with functional/slope discontinuity.

o To deal with constraints, strategies often prefer a feasible solution over infeasible ones. They are referred as Feasibility First
constraint handling strategies e.g. NSGA-II.

However, preserving marginally infeasible solutions during the course of search and actively recombining them can result in faster
rate of convergence over feasibility first strategies. Infeasibility Driven Evolutionary Algorithm (IDEA)[1] is one such scheme known for
its superior performance on constrained optimization problems.

Smart reduction in variable space is yet another scheme that can offer significant benefits to the process of recombination. Bump
Hunting[2] is an approach that can be used to identify potential regions of interest.

The proposed approach employs IDEA with original variable bounds until 50% of the computational budget is exhausted. Thereafter,
it identifies reduced variable bounds using Bump Hunting and runs IDEA using these reduced bounds for the remaining
computational budget.

1. Ray, T, Singh, H., Isaacs, A., and Smith, W.,(2009) “Infeasibility driven evolutionary algorithm for constrained optimization,” in Constraint Handling in Evolutionary
Optimization (Mezura-Montes, E. ed.), Studies in Computational Intelligence, vol. 198, pp. 147-167, Springer.
2. Friedman, J. H., & Fisher, N. I. (1999). Bump hunting in high-dimensional data. Statistics and Computing, 9(2), 123-143.

Group: SO2 The 3rd Evolutionary Computation Competition 2019 Date: 14/12/2019
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Infeasibility Driven Evolutionary Algorithm (IDEA) N\{?).;suw
‘ PTIMIZATION
Collection of 3N solutione

offspring solutions using IDEA ranking.

Population Size N 100 g . ‘ . ‘
ope 0.09 | . . . 9
Crossover probability 1.0 o
. . " Infeasible space |
Mutation probability 0.1 oor @ P N °
q . . . . 0.06 | P ° \Q i
Distribution index: Crossover 20 005 ] N &L o
(')
Distribution index: Mutation 20 Zzz ° (JOQ °
Infeasibility ration (a) 0.1 oo @ ® °
0.01 | Feasible space ]
. e 9 o
Steps: <+
1. Generate N Initial solutions using LHS
sampling. 01
2. Evaluate these N solutions. o
0.08 - E
3. Create N offspring using SBX and PM. 07 2 4
0.06 - 8 9
4. Evaluate these N offspring solutions. oosl €5
=
5. Select N solutions from these N parent and N " @
‘an
=

Group: SO2 The 3rd Evolutionary Computation Competition 2019 Date: 14/12/2019

=X THE UNIVERSITY OF NEW SOUTH WALES




Bump Hunting (BH) for Space Reduction: Illustration 1‘{}3’.’231’31‘?‘

\ PTIMIZATION

200 200
1180 1180
1 160 1160
1 140 1 140
- 120 - 120
100 100
80 80
60 60
40 40
20 20
0 0
Promising hyper-rectangles identified using best 50% Lower bound = max(min(all variables from all boxes), global LB)
solutions(Minimization sense). Upper bound = min(max(all variables from all boxes), global UB)

Group: SO2 The 3rd Evolutionary Computation Competition 2019 Date: 14/12/2019




IDEA with BH for Wind Turbine Design Problem \{“;‘“;f:;::;\:“

‘\ PTIMIZATION |

Reduced variable bounds identified from Reduced variable bounds identified after Overshoots and Missed spaces
best solutions. 5,000 function evaluations
B e e e e e L o e e o e e e LU Ll B e 1 1T T T T T T T T T T T T T T T T 1 T T
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Varlables Variables Variables

Potential regions of interest. Bounds  Top 50% of solutions (with constraint Low height of red and blue bar is

identified using results of 21 runs of NSGA-  violation less than 1e-3 or feasible preferred.
II, IDEA for 10,000 and 30,000 functions solutions) were used to identify the

evaluations. reduced variable bounds.

Volume=1.4429E-13 Volume=2.9170E-11

Group: SO2 The 3rd Evolutionary Computation Competition 2019 Date: 14/12/2019 "= UNSW

ERSITY OF NEW SOUTH WAl
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Thank you for your attention

http://www.mdolab.net/
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Applying Differential Evolution to
Wind Turpbine Optimization in
Considering Constraint Violations

Hori Takato Uchitane Takeshi (Aichi Institute of Technology)

Evolutionary Computing Symposium 2019 @ Minamiawaji sity



Wind turbine optimization constraints

There are many constraints on the problem of Wind turbine optimization.

The constraint violation rate is
depending on the constraint conditions.
Particular, 3, 13,17, 18, 19, and 20th
constraints have many constraint
violations.

Number of constraint viorations
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Three steps to applying Ditferential
-volution to eliminate constraint violations

start

LEUCUICICAGLREL-CHE Step.1:ldentifying constraints with a higher constraint

fewer generations to violation rate from random value vectors.
minimize objective

function.

If n and m are too small,
the objective function is
optimized with
constraint violations
remaining. Step.3:Performing Differential Evolution in k generations with

individuals with few constraint violations as initial individuals

Step.2:Adding a penalty corresponding to the constraint
violation rate and minimizing the number of constraint
violations by Differential Evolution with m generations

num of individual X (n+m+k)=10000 finish



Result

parameter Transition of evaluation function

C R n u m Of 0 50 100 150 200 250 300 350 400

individuals »
0.5 0.2 170
0.5 0.2 2h 10 20 370
0.3 02 25 10 20 370 WD
|

0.3 0.5 2h 10 20 370

Best : 0.055301 |

Var. :1.9632E-07
Ave. :0.056092571
Med. : 0.05605




Mutation based on Variance of Individuals in IDE

P4-01 Ryukoku University
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Overview

IDE
Differential EvolutionWith an Individual-Dependent
Mechanism

€ Akind of differential evolution method proposed by Lixin Tang et al.
@ Efficient search is possible by IDP setting to set parameters based on individuals’
fitness and IDM strategy to set an appreciate search direction and its range.

/Superior Set \ \

...... x
@ @ @’ @@ N @@*@

good bad

Infirior Set

X

Ll®




Mutation:IDP Setting

& Sort population based on fitness

@@ ...... @

good bad
F->F, = (randn( ) 0.1) (0 =1,2,...,NP)

¢ Individuals with good fitness are set to smaller F
» and each search range is reduced.
¢ Individuals with bad fitness are set to larger F and
its search range is expanded.

CR->CR; = (randn( ) 0.1) (i=12.., NP)

¢ Individuals with good fitness are set to smaller CR
to inherit more information from parents.

¢ Individuals with bad fitness have a larger CR to
inherit more information from mutant individuals. RPN




Mutation:IDM Strategy

o =y +{ F, % (%p1 %y )+ FE % (Xp5_d,3)0 ES
i © \E, * (Xpotrer — X0 )+ Ey * (Xyp _dy3 )0 €1

Population:NP {'S:Superior set
@ i I:Inferior set

_ ps Xpetter :INdividuals randomly

SU pe rior: S ﬁ r 3 selected from the superior set E

@ @ L +rand}(0,1) - wi-1 ),if(rand! (0,1) < Py)
@ "3 J 3, Otherwise

Solution Space

Xy

{ Generate new individuals randomly or
Inferior:1 17ps : selected from a current population :

X T
@ @ ps:Determine the composition of dr3

and the proportion of individuals in
the superior and inferior sets

HE HD RV
AN



Proposed Method

4 Dimensional compression with SOM

& When the target problem is

x; = {x}, x?,.., xij}
high-dimensional problem
¢ Introduce the Self-Organizing
Map(SOM)

NP = {xll,xz', e X}

_ (1,2 J 1 .2
X —{xi,xi,...,xi}->{xi,xi} X; ={xll'xl2

¢ Normalize the Solution space

0<x/<1,0<x/<1

AN ALY
AN



Proposed Method

m & Clustering for estimating a population

@ In the previous method, individual diversity is
not considered, because ps calculates only
based on the number of generations.

o

400

200

& The proposed method adopts a population ~400
clustering method (Dirichlet process
gaussian mixture model)to capture a
landscape by using ps.
Converge
Ps utilizes a standard deviation for each
cluster and determine accoding to the | |
following formula: 11 | |
' ol | I
ps = 0.1+ 0.9 * (1 —&(C,)1°%) e )
a(C,,):Standard deviation of each cluster k --------- I — I — B




Crossover

¢ Insert an individual randomly

FORj=1toD
J - v g if(rand](0,1) < CR; 07 j = jrana) ;nSde(:)lc:.;t crossover points at
b9 xl] g otherwise

IF(u{’g<L oru{,g> U )

ul{g =1L + randij(o,l) - (U -L ) & If the value of the j-th dimension
is out of solution space, a next
individual gemerated at ramdom in
the solution space instead of pulling

back

Solution Space




& Optimize individuals in two stages

& Update an individual by comparing
the number of elements that satisfy
the constraints

¢ If all constraints are satisfied and its fitness
is better than before, an individual is
update.

Fitng._ss

\ 4

»

Constraint




Parameter Settnigs

& The proposed method doesn’t need a
parameter fitting method

TN 22
HEA R
RYUKOKU UNIVERSITY



Jernej Zupancic, Aljosa Vodopija, Tea Tusar,
Erik Dovgan, Bogdan FilipiC
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Single-objective optimization algorithm (s05)

« Algorithm: |DE (Python Package: pygmo, function: saDE)
 DoE method: Latin hypercube sampling

« Constraint handling technique (CHT): dynamic penalty
function

fe) = £ + ()" ) v

« Parameters and configuration: 014
— Population size: 20
— No. of generations: 500
— DE variant: rand/1/bin
— CHT parameters: c=1.0,a=1.0

1

o
-
N

best

—— median

o
-
o

Power generation cost
o
o
(0]

N

0 2500 5000 7500 10000
Solution evaluations

o

o

o
1




Evolution Computation Competition 2019
Single objcective optimization

Jun—ichi Kushida (Hiroshima City University)

* Method: DE with £ constraint method and pareto approach

 Optimize constraint violation @(x) and f (x) separately

£(x) 4 Solutions other than pareto front
improve either f(x)or ¢(x)
Solutions on the pareto front ¢(x)

Improvement of ¢(x) is prioritized
(€ level comparison)

In the two-objective space (f, @ space)

* Individual with Pareto rank =1
—> Prioritize improvement of @(x)
(Search feasible solution)

* Individuals with Pareto rank 1=1
— Preserve diversity




e epsilon level comparison

Relax constraints by € and compare parent and child

hf either constraint violation > €, compare by constraint violation }

Z

f(i When comparing
; @ | X, and x,
] win |
3 @)
o
@
|
If both violation < &, compare by win /' win
function value J/ ! )
< > € D(x)

relax constraint



Control of € level

_ _ cp: parameter for control of ]
€ value value in generation t

E(t):{ e0)(1— )P, 0<t<T.

C

0, t> T,

Initial € value: €(0) = @(xp)

Xg is the Oth individual among the initial individuals sorted in ascending
order by constraint violation (6 = r X NP)

Determine by the N
violation of the €

initial population Gradually decreases}

(0)

N Set £ =0 at T, generation




Setup
Parameter  Jvalue

Population size NP 50 ->10 (after T, gen.)
T, 140th generation
T 0.1
cp 3

» Strategy of € DE: rand/1 /bin

Mutant vector v = x,; + F; (X, — X;-3)

X1 is randomly selected from individuals with pareto rank =1

Parameter of t-th generation Gradually increase
0 0.3->0.6

o . =
;= 0603+

* CR; =0.1+0.9« 0] Gradually decrease
£(0) 0.9->0.1




flx)

Convergence of populations in f, ¢ space

Early stage of search

Later generations

0,200 0.070
[ ]
0.1?5-. 0,065
0.150
. B 0.060 ey,
01001 . ¢ . ' = 0055 ¢ oo
* .. L ] L ] .
0.075 1 . . - 0.050
0.050
0.045
0.025 1
: 0.040 . : : :
0.000 9 > a ! 10 0.000 0.002 0.004 0.006 0.008
Pl x) dilx)
At the end of the search Q
0.200
0.175 1
0.150
0.125
= 0.100 |
0.075
ooso1 ® .
0.025 1
0.000 : :
0.000 0.006 0.008 0.010

Bilx)

0.010



Experimental result

Average, maximum, median, and average values over 21 trials

Transition of the best solution for the trial of median

min 0.054334 o i e 6
max 0.057439 o ;
median | 0.055819  _..|
average | 0.055805 ) o .

Evaluation
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Natural Evolution Strategy (NES) [Wierstra O8]

* Minimizes the expected objective function value:
J(8) = [ f(x)p(x|6)dx.
> f(x) : objective function
»p(x|0) : probability distribution
» 0: parameter of probability distribution

f(x)A _Q_bj_e_q’giye functi?n

* Natural gradient descent method [Amari 85]:
6 — 6 —nF'(0)Vs](0).

»7: learning rate p(x)‘ProbabiIity distribition
»F(0) : Fisher's information matrix p(x]65=9) :
®F(0) = Ex[VoInp(x|0) (Vg Inp(x]6))"]

>
X

p(x|0°=7)




Natural Evolution Strategy (NES) [Wierstra 08]

e Algorithm when p(x|60) is a normal distribution
1. Initialize the generation g = 0 and the probability distribution N(m(g), C(g)).
2. Make 2 individuals {x;}%, according to N(m9), €\9)).
3. Evaluate x;, and update m and C as follows.

Af(x)
mem—ny [E0 G —m)
A ANl
cec-ny DG -me-mr-c)

4. If a stop condition is not met, g = g + 1 and go to step 2.

amm
o

.

- Optimum

Initialization  Individual
generation update

h Weighting & Prameter



Natural Evolution Strategy (NES) [Wierstra 08]

* Fitness shaping [Wierstra 08]

»Makes the algorithm invariant under monotonically increasing transformation.

f(xi)
A A

m < m+n Yo w;i(x; —m)

€ C—nSiyw ((—m)x —m)" - C)
@ The better f(x;) is, the larger w; is.

rank _ _ Wi 1

l T vA ’
Zj:lw_] A’

w; = max (0, In (% + 1) — ln(iord)) ,where i,.q is rank relating to f(x).

»Replaces — with a normalized weight w;.

w



Complexity Reduction Fast Moving
Natural Evolution Strategy (CR-FM-NES)[Nomura 17]

e Uses a normal distribution with a * Algorithm:
restricted covariance matrix as p(x|8). 1. Initialize each variables.
> Covariance matrix: a*D(I + vv")D 2. Generate A samples: x;~p(x|0).
[Akimoto 14] 3. Sort x; with a preference order

€ D : diagonal matrix operator <.

@ v : vector 4. Switch learning rates of o, v and D

® o :scalar according to search situation.
»Mean vector: m 5. Update 8@ = (m, g,v, D) using
»Parameter of normal distribution: natural gradient.

6 =(m,o,v,D) 6. If the stopping condition is met, stop,

* Reduces time and space complexity.

otherwise g « g + 1 thengo to
step 2.



CR-FM-NES for
Wind Turbine Design Optimization Problem

* Parameters:
»Sample size: 48 * Ath
» Others: default 6th %*

* Preference order operator: <,

1. Upper and lower constraint
violation

2. Problem constraint violation

i% nd Fea§|ble
egion

t

st 2nd J1Eh eth
3. Objective function
, . Obijective function 1 2 1 -
e Solutions which do not meet
Problem constraint violation 0 O ) -

upper and lower constraint are

not simulated. Upper and lower constraint 0 0 0 2
violation



The 3rd Evolutionary
Computation Competition

University of Tsukuba, M1 Yuta Kobayashi
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NotSatisfyCount

Problem Exploration
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2-step Search

» finding non-constrained initial
population:

__Ci—
> Zi =
g

> f =X wiz;

» w;: weight of constraint
» c;: value of constraint
» u; : mean of constraint

» o;: std of constraint




Pre-experiment - how to find constraint weight

Constraints not_satisfy_propotion

#Constraint1 0.54192
#Constraint2 0.31853
#Constraint3 0.94864
#Constraint4 0.26685
#Constraintb 0.20023
#Constraint6 0.7698
#Constraint7 0.24959
#Constraint8 0.13028
#Constraint9 0.31362
#Constraint10 0.19650
#Constraint11 0.52900
#Constraint12 0]
#Constraint13 0.93847
#Constraint14 0.58237
#Constraint15 0.52680
#Constraint16 0.29401
#Constraint17 0.89310
#Constraint18 0.74274
#Constraint19 0.74027
#Constraint20 0.94039
#Constraint21 0]
#Constraint22 0.40636

NotSatisfyCount

NotSatisfyCount

80000 -

60000 -

40000 -

20000 -
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Parameter

Population 100 Population 70
Crossover rate, C 1.0 Crossover rate, C 1.0
Scaling Factor, F 0.5 Scaling Factor 0.5
index parameter, n,, 20 index parameter, n,, 20
Mutation Rate 1/32 Mutation Rate 1/32

Decomposition method SLD

Scalar aggregation Weighted
function Tchebycheff



Result

Trials HyperVolume |[satisfycount

1 2.791 696

2 2.337 586

3 3.246 716 10 - T

4 3.126 609 - Not satisfied
5 2431 585 8 1 - Satisfied
6 3.177 570

7 [2.833 648 6

8 3.301 603 a

9 3.276 506

10 2.923 782 2

11 3.004 590

12 3.302 579 0

13 |2.863 713

14 [3.200 536 =2 1

15 [2.963 617 ]

16 2.995 540

17 3.029 593 -6 4

18 2.452 689

19 [2.949 610 #0bjectivel  #Objective2 #0bjective3 #0bjectived #0bjectives
20 [2.402 615

21 [2.772 638
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Introduction

Characteristics of Competition

1. Wind Turbine Optimization Problem is a severe
constrained problem.

» Utilizing various infeasible solutions

2. The reference point for HV calculation is far from
the true nadir point.

»Modifying initial weight vectors to obtain
solutions near the edges of the Pareto front
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The Algorithm Utilizing Various

Infeasible Solutions: CM2T

CM2T (Constrained Multi-objective to Two-objective)

IS a constrained multi-objective evolutionary algorithm
based on decomposition.

Characteristic of CM2T

Solutions are evaluated and selected in each transformed
two-objective optimization problem.

Minimize Objective 1: Scalarizing function value

Minimize Objective 2: Overall constraint violation value

CM2T proposed paper

T. Fukase, N. Masuyama, Y. Nojima, and H. Ishibuchi, “A Constrained Multi-objective
Evolutionary Algorithm Based on Transformation to Two-objective Optimization Problems,” In
Proc. of Intelligent System Symposium (FAN2019), Toyama, 2019 (Japanese).



CM2T

Problem Transformation

Solutions corresponding to each vector are evaluated in the
transformed two-objective (scalarizing function and overall
constraint violation) space.

w : Weight vector g(w, x): Scalarizing function

Avxl Wa O : Solution CV : Overall constraint violation
N Subpopulation 1~ _Subpopulation 6
@ < A <X A
N — ©
= 2 2
= o s
E £
c c
s—"—> sSL—">
Minimize f, Minimize CV Minimize CV
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Problem Transformation

Solutions corresponding to each vector are evaluated in the
transformed two-objective (scalarizing function and overall
constraint violation) space.

w : Weight vector g(w, x): Scalarizing function

A1 W, O : Solution cV : Overall constraint violation
N __Subpopulation 1 __Subpopulation 6
<5 X A <X A

N — ©
= = =
= >0 ')
= g, 8
EPp E
O > W6 E (@) o c

> s—— sl——m—

Minimize f, Minimize CV Minimize CV



CM2T

Problem Transformation

Solutions corresponding to each vector are evaluated in the
transformed two-objective (scalarizing function and overall
constraint violation) space.

w : Weight vector g(w, x): Scalarizing function

Avxl Wa O : Solution CV : Overall constraint violation
N __Subpopulation 1 __Subpopulation 6
< X A < A
.E — O
= 2 2
= > 0O >
" — <D} -0 O
= N1l o NT o
EP =
=| o o = O o
s— sL——-:
Minimize f, Minimize CV Minimize CV



CM2T

Search Method in Each Subpopulation

Solutions in each subpopulation are evaluated and selected by
the Pareto ranking and the crowding distance In the
transformed objective space. O * Solution

Subpopulation 1 Subpopulation 6
A

M

Minimize g(wg,X)

Minimize g(wy,X)
-

Minimize CV Minimize CV
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constrained problem.
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Modifying Initial Weight Vectors

Motivation

In the previous study [Ishibuchi et al. GECC0O2017]

When the reference point is far from the nadir point, solutions
at the edges of the Pareto front have larger HV contribution.

Circle size = HV Contribution

R o e S 1.0/ O T A
YN\ S
. X Py 77
r
1 s | [ [0/ /]7/ f NN RN @ s ]
\ 7 NN / 1
NI/ N T ™
0.0 \\\ /, s 0.0 \\ /I \ > . \\\ III
00~ N\ly/’ 00 00 - W 0. 0 -

= Nadir point Reference point



Modifying Initial Weight Vectors

10
Our Method

To search for solutions near the edges of the Pareto front, we
raised the initial weight vectors to the power of  (a > 1).

Before: w = (W, W,, ..., w,) = After: w’ = (W,% W,%, ..., W,%

w : Weight vector == Pareto front O : Solution
AW

Wy
-
Ws

>W7
>

fl
Initial weight vectors (a = 1)




Parameters

Population size : 210

Subpopulation size : 21

Scalarizing function : Normalized Tchebycheft
Crossover : SBX (DI: 20)

Probability of crossover : 1.0

Mutation : Polynomial Mutation (DlI: 20)
Probability of mutation : 1 / 32

The power of weight vectors : 4

The parameter tuning is not applied.
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Scope of the Problem
Proposed Algorithm

Numerical Experiments

Wind Turbine Design Optimization using SRMEA 1/14



Problem description

@ A multi-objective wind turbine design optimization problem
as part of the Evolutionary Computation Competition 2019.
@ The problem involves 5 objectives, 32 continuous variables

and 22 constraints, which are evaluated using WISDEM

and OpenMDAO tools.

@ The design optimization problem needs to be solved with a

computational budget of 10,000 function evaluations.

Wind Turbine Design Optimization using SRMEA 2/14



Overview

Generate: reference l
vectors, W Generate: | W/|
No offsprings, C and
evaluate only the unique
Initialize: population, ones
Pinit i
where /P,.nit/=11D—1 Combine: R = P+C
— l
Update: FE and Update: iy G
Archive and
adapt W
v Yes l
Update:Z ., 7 Environmental
d L . | | Selection: select P
Gl Output: ND solutions solutions as parents of
adapt W from Archive next generation

Different steps of SRMEA.

Wind Turbine Design Optimization using SRMEA



Generation of Reference Vectors

W, Reference vectors originating from zp,,.

Wind Turbine Design Optimization using SRMEA 4/14



Initialization of Population

@ The size of the initial population is predefined by the user (Njpj).

@ The solutions are initialized within the variable bounds using

Latin hypercube sampling (LHS).

Wind Turbine Design Optimization using SRMEA 5/14



Adaptation of Reference Vectors

The update scheme for the i reference vector is presented
below:

. — WO,iQ(zmax—Zm[n) R
VVI  [Wo,io(Zmax—Zmin)|| ! I = 1,...NW

T T
- = Original W

. — Adapted W
12 . . . @ Solutions in popultaion
1t
0.8
o
061
04 r
027
| o

0 02 04 06 08 1 12 14
f

Adaptation of W for a 2 objective problem.

Wind Turbine Design Optimization using SRMEA 6/14




Offspring Generation

@ In each generation, Ny offspring solutions are generated using
simulated binary crossover (SBX) and differential evolution (DE)

operator with an equal probability.

@ For DE, the first parent is from the sorted list of parents and the

other two parents are randomly chosen.

@ Each offspring solution undergoes polynomial mutation (PM).

Wind Turbine Design Optimization using SRMEA 7/14




Assignment Operation

o

Assignment of solutions to W.

urbine Design Optimization using SRMEA



Environmental Selectio

1 1
3 —> Active ref. vector(s)
Inactive ref. vector(s)
0.9 ® w" @ Solutions in popultaion 09
0.8 O Selected solutions 08
0.7 W 0.7
0.6 W 0.6
05 05
0.4 A 0.4
0.3 W:m 0.3 W
0.2 0.2
0.1 Wy 01
: LHRS :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
f, f,
Selecting solutions from active reference vectors. Using inactive reference vectors later to select more
9

solutions.

zation using SRMEA



Constraint Handling

A ND-based constraint handling method is employed here to
maintain the solution diversity during the search of feasible
region(s). Two possible scenarios can occur:

@ All parent+offspring solutions are infeasible: The solutions
are normalized according to z,;, and zZmax. Then, a
non-domination (ND) sort is performed taking the CV of the
solutions as an objective and the ED of the solutions (calculated
with the normalized objective values) to the origin as the second
objective. Finally, the population is sorted based on the ranks
obtained from this ND sort algorithm.

@ Some solutions are feasible: If some solutions are feasible in
the combined population (hnumber of feasible solutions is less
than Ny ), they are automatically selected and the rest of the
infeasible solutions are sorted according to the ND-based
scheme mentioned in the previous step.

Wind Turbine Design Optimization using SRMEA 10/ 14



Parameter Settings

Number of initial solutions, Nj,;: 11D —1.

Maximum number of function evaluation, FEmnax: 10,000.
Uniform spacing on unit hyperplane in NBI method, H: 7.
Number of reference vectors, Ny, : 330.

Population size, N = Ny,

Number of independent runs: 21.

Crossover (p¢) and mutation probability (pm,): 1.0 and 1/D.

Distribution index of crossover (n¢) and mutation (n,): 30 and
20.

Crossover probability (CR) and differential weight (F) for DE: 1.0
and 0.5.

Performance metrics: Hypervolume.

Wind Turbine Design Optimization using SRMEA 11/14



Hypervolume statistics for feasible non-dominated solutions
obtained in 21 independent runs are as follows:

Worst Mean Best Median Std Success Rate (%)
4.9745 5.1195 5.2525 5.1378 0.0742 100

A success rate of 100% means that all 21 independent runs
were able to obtain feasible solutions.

Wind Turbine Design Optimization using SRMEA 12/14




Median Hypervolume Convergence

HV of Median Run

O L L L
0 2000 4000 6000 8000 10000
Function Evaluations

Hypervolume convergence for the median run.

Wind Turbine Design Optimization using SRMEA 13/14




Thank you for listening!

Wind Turbine Design Optimization using SRMEA
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Multi-objective optimization algorithm (mO05)

+ Algorithm: Modified version of NSGA-II capable of including
various CHTs (our implementation in Python)

* DoE method: Latin hypercube sampling
« CHT: dynamic penalty function

fe) = £ + ()" ) v

« Parameters:

— Population size: 48 mjzz

— No. of generations: 208 5,00

— Crossover probability: 1.0 éz.oo- ot
— Mutation probability: 0.15 T 1001 — median
— CHT parameters: ¢ = 0.5, a = 2.0 0001,

0 2500 5000 7500 10000
Solution evaluations



Algorithm overview
for EC competition 2019

Hayato Noguchi (Ritsumeikan University)

Tomohiro Harada (Tokyo Metropolitan University)




Overview

* Use Il¢pp + as evaluation indicator
* Give the constraint processing to conventional I¢pp +

 Change Simulated Binary crossover (SBX) to Differential
Evolution operator (DE) as crossover method

e Exclude similar solutions



Ispg +

Assign the total fitness of all m objectives to each individual

Give maximum Ispp + value to the individual with the minimum fitness
Compare each Ispg + values of remaining individuals

Take the top N individuals to the next generation

W e

If individual p is feasible ...
Ispe+ () = min  {dist(p,q1), dist(p,qz), ..., dist(D, AN, 4gip10-1)3

q€Pfeqsibles PF]
p() 4() <p() . 1,2

() = {q(]') otherwise 7 SO

Convergence to the optimal Pareto front can be expected
while keeping the diversity of the population.




Constraint Processing

e (Calculate violations based on constraints
K

violation(p) = z max {O, — gg’;ff,?} =0 (gx: constraint function)
i=1 K

Ispr + (p)  (If pis feasible)

clspg + (P) = {—violation(p) (If p is infeasible)

The higher violation(p) is,
the less likely the individual p remains in the next generation



Other Improvements

* Replace Simulated Binary crossover (SBX) to Differential Evolution operator (DE)
as crossover method

P+ Fx(p? = b)) rand;(0) S CR V j = jrana ie2..,N)
g p]i- otherwise j € (1,2, ..., Individual Size)

 Exclude similar solutions

meigl{dist(p, a)} < eps (A:All evaluated solutions)
a

If many similar solutions exist, the threshold of exclusion eps is reduced gradually

eps = 0.5Xeps



Parameters

Population size: 100

Number of generations: 100
Crossover probability (CR): 0.9
Scaling factor (F): 0.5
Mutation probability: 1.0

Threshold of excluding similar solutions: 0.01



Thank you for listening.
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